A Fluorophore-Labeled Lysine Dendrimer with an Oxo-Anion-Binding Motif for Tracking Gene Transfection.


Journal

Chembiochem : a European journal of chemical biology
ISSN: 1439-7633
Titre abrégé: Chembiochem
Pays: Germany
ID NLM: 100937360

Informations de publication

Date de publication:
01 08 2023
Historique:
revised: 17 04 2023
received: 12 04 2023
medline: 23 10 2023
pubmed: 19 4 2023
entrez: 18 4 2023
Statut: ppublish

Résumé

A transfection vector based on a peptide dendrimer (1) has been developed and its abilities for DNA binding and transport have been investigated. By attaching a fluorophore to the vector system (1*), several steps in the transfection process could be monitored directly. As DLS and AFM studies showed, the labeled vector 1* condensed DNA into tightly packed aggregates able to enter eukaryotic cells. Co-localization experiments revealed that the ligand/plasmid complex is taken up by the endosomal pathway followed by an endosomal escape or lysosomal degradation. Afterwards, the plasmid DNA seems to enter the nucleus due to a breakdown of the nuclear envelope during mitosis, as only cells that have recently undergone mitosis showed H2B-GFP expression.

Identifiants

pubmed: 37071493
doi: 10.1002/cbic.202300296
doi:

Substances chimiques

Dendrimers 0
Lysine K3Z4F929H6
DNA 9007-49-2
Anions 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202300296

Informations de copyright

© 2023 The Authors. ChemBioChem published by Wiley-VCH GmbH.

Références

 
P. Midoux, C. Pichon, J.-J. Yaouanc, P.-A. Jaffrès, Br. J. Pharmacol. 2009, 157, 166-178;
M. A. Mintzer, E. E. Simanek, Chem. Rev. 2009, 109, 259-302.
H. Yin, R. L. Kanasty, A. A. Eltoukhy, A. J. Vegas, J. R. Dorkin, D. G. Anderson, Nat. Rev. Genet. 2014, 15, 541.
E. Wagner, Pharm. Res. 2004, 21, 8-14.
D. Pezzoli, G. Candiani, J. Nanopart. Res. 2013, 15, 1523.
 
H. Yin, R. L. Kanasty, A. A. Eltoukhy, A. J. Vegas, J. R. Dorkin, D. G. Anderson, Nat. Rev. Genet. 2014, 15, 541-555;
A. Gigante, M. Li, S. Junghänel, C. Hirschhäuser, S. Knauer, C. Schmuck, MedChemComm 2019, 10, 1692-1718.
D. Glover, H. Lipps, D. Jans, Nature reviews. Genetics 2005, 6, 299-310.
G. A. R. Gonçalves, R. d. M. A. Paiva, Einstein (São Paulo) 2017, 15, 369-375.
X. Gao, K.-S. Kim, D. Liu, AAPS J. 2007, 9.
 
I. Tranchant, B. Thompson, C. Nicolazzi, N. Mignet, D. Scherman, J. Gene Med. 2004, 6 Suppl 1;
K. K. Ewert, A. Ahmad, N. F. Bouxsein, H. M. Evans, C. R. Safinya in Nonviral Gene Delivery with Cationic Liposome-DNA Complexes, Humana Press, Totowa, 2008, pp. 159-175.
J. M. Dang, K. W. Leong, Adv. Drug Delivery Rev. 2006, 58, 487-499.
A. Kichler, J. Gene Med. 2004, 6 Suppl 1, S3-10.
M. A. Mintzer, M. W. Grinstaff, Chem. Soc. Rev. 2011, 40, 173-190.
S. Jain, H. Attarwala, M. Amiji, Nano Life 2010, 1.
F. Said Hassane, A. F. Saleh, R. Abes, M. J. Gait, B. Lebleu, Cell. Mol. Life Sci. 2010, 67, 715-726.
 
Y. Jiang, R. Tang, B. Duncan, Z. Jiang, B. Yan, R. Mout, V. M. Rotello, Angew. Chem. Int. Ed. 2015, 54, 506-510;
L. C. Smith, J. Duguid, M. S. Wadhwa, M. J. Logan, C.-H. Tung, V. Edwards, J. T. Sparrow, Adv. Drug Delivery Rev. 1998, 30, 115-131.
Y. K. Sung, S. W. Kim, Biomaterials 2019, 23, 8-8.
 
H. Y. Kuchelmeister, A. Gutschmidt, S. Tillmann, S. Knauer, C. Schmuck, Chem. Sci. 2012, 3, 996-1002;
S. Junghänel, S. Karczewski, S. Bäcker, S. K. Knauer, C. Schmuck, ChemBioChem 2017, 18, 2268-2279;
M. Li, M. Ehlers, S. Schlesiger, E. Zellermann, S. K. Knauer, C. Schmuck, Angew. Chem. Int. Ed. 2016, 55, 598-601;
H. Y. Kuchelmeister, S. Karczewski, A. Gutschmidt, S. Knauer, C. Schmuck, Angew. Chem. Int. Ed. 2013, 52, 14016-14020;
O. F. Khan, E. W. Zaia, H. Yin, R. L. Bogorad, J. M. Pelet, M. J. Webber, I. Zhuang, J. E. Dahlman, R. Langer, D. G. Anderson, Angew. Chem. Int. Ed. 2014, 53, 14397-14401;
K. C. Wood, S. R. Little, R. Langer, P. T. Hammond, Angew. Chem. Int. Ed. 2005, 44, 6704-6708;
C. Y. M. Hsu, M. Hendzel, H. Uludaǧ, J. Gene Med. 2011, 13, 46-59;
J. Chen, H. Tian, Z. Guo, L. Lin, X. Dong, X. Zhu, X. Chen, J. Appl. Polym. Sci. 2012, 123, 2257-2265;
T. Zhao, H. Zhang, B. Newland, A. Aied, D. Zhou, W. Wang, Angew. Chem. Int. Ed. 2014, 53, 6095-6100;
J. H. Jiang, X.-Y Hu, S. Mosel, S. K. Knauer, C. Hirschhäuser, C. Schmuck, ChemBioChem 2019, 20, 1410-1416;
Dirksmeyer, P. Stahl, C. Valet, S. Knauer, M. Giese, C. Schmuck, C. Hirschhäuser, Chem. Eur. J. 2022, 28, e202104618.
 
M. X. Tang, F. C. Szoka, Gene Ther. 1997, 4, 823-832;
J. Yang, Q. Zhang, H. Chang, Y. Cheng, Chem. Rev. 2015, 115, 5274-5300.
D. Zhou, L. Cutlar, Y. Gao, W. Wang, J. O'Keeffe-Ahern, S. McMahon, B. Duarte, F. Larcher, B. J. Rodriguez, U. Greiser, W. Wang, Sci. Adv. 2016, 2, e1600102.
M. Zeng, D. Zhou, F. Alshehri, I. Lara-Sáez, Y. Lyu, J. Creagh-Flynn, Q. Xu, S. A. J. Zhang, W. Wang, Nano Lett. 2019, 19, 381-391.
S. Liu, Y. Gao, D. Zhou, M. Zeng, F. Alshehri, B. Newland, J. Lyu, J. O′Keeffe-Ahern, U. Greiser, T. Guo, F. Zhang, W. Wang, Nat. Commun. 2019, 10, 3307-3307.
L. Guan, S. Huang, Z. Chen, Y. Li, K. Liu, Y. Liu, L. Du, J. Nanopart. Res. 2015, 17, 385.
 
H. Yoo, R. L. Juliano, Nucleic Acids Res. 2000, 28, 4225-4231;
M. Heitz, S. Zamolo, S. Javor, J.-L. Reymond, Bioconjugate Chem. 2020, 31, 1671-1684.
S. Han, J. Wu, ACS Appl. Mater. Interfaces 2022, 14, 55944-55956.
 
M. Tang, H. Dong, Y. Li, T. Ren, J. Mater. Chem. B 2016, 4, 1284-1295;
D. Ma, Q. M. Lin, L. M. Zhang, Y. Y. Liang, W. Xue, Biomater. Sci. 2014, 35, 4357-4367;
X. Zhou, Q. Zheng, C. Wang, J. Xu, J.-P. Wu, T. B. Kirk, D. Ma, W. Xue, ACS Appl. Mater. Interfaces 2016, 8, 12609-12619.
F. Wang, K. Hu, Y. Cheng, Acta Biomater. 2016, 29, 94-102.
S. K. Zhang, L. Gong, X. Zhang, Z. M. Yun, S. B. Li, H. W. Gao, C. J. Dai, J. J. Yuan, J. M. Chen, F. Gong, Y. X. Tan, S. P. Ji, J. Gene Med. 2020, 22, e3259.
 
C. Schmuck, L. Geiger, J. Am. Chem. Soc. 2005, 127, 10486-10487;
H. Y. Kuchelmeister, C. Schmuck, Chem. Eur. J. 2011, 17, 5311-5318.
E. Wagner, Ligand-Polycation Conjugates for Receptor-Targeted Gene Transfer, Eds.: L. Huang, M.-C. Hung, E. Wagner), Academic Press, San Diego, 1999, pp. 207-227.
C. Rivetti, M. Guthold, C. Bustamante, J. Mol. Biol. 1996, 264.
C. J. Smoyer, S. L. Jaspersen, Curr. Opin. Cell Biol. 2014, 26, 1-9.
B. Dalby, S. Cates, A. Harris, E. C. Ohki, M. L. Tilkins, P. J. Price, V. C. Ciccarone, Methods 2014, 33, 95-103.
M. Driffield, D. M. Goodall, D. K. Smith, Org. Biomol. Chem. 2003, 1, 2623-2620.
 
C. Wu, C. Gao, S. Lü, X. Xu, N. Wen, S. Zhang, M. Liu, J. Biomed. Mater. Res. Part A 2018, 106, 440-449;
T. Rehm, C. Schmuck, Chem. Commun. 2008, 801-813.

Auteurs

Nazli Aldemir (N)

Institute of Organic Chemistry, University of Duisburg-Essen, Universitätstrasse 7, 45117, Essen, Germany) E-mail: christoph.hirschhäuseruni-due.de.

Cecilia Vallet (C)

Department of Molecular Biology II, University of Duisburg-Essen, Universitätstrasse 7, 45117, Essen, Germany.

Shirley K Knauer (SK)

Department of Molecular Biology II, University of Duisburg-Essen, Universitätstrasse 7, 45117, Essen, Germany.

Carsten Schmuck (C)

Institute of Organic Chemistry, University of Duisburg-Essen, Universitätstrasse 7, 45117, Essen, Germany) E-mail: christoph.hirschhäuseruni-due.de.

Christoph Hirschhäuser (C)

Institute of Organic Chemistry, University of Duisburg-Essen, Universitätstrasse 7, 45117, Essen, Germany) E-mail: christoph.hirschhäuseruni-due.de.

Articles similaires

Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
DNA Methylation Humans DNA Animals Machine Learning

Amyloid accelerator polyphosphate fits as the mystery density in α-synuclein fibrils.

Philipp Huettemann, Pavithra Mahadevan, Justine Lempart et al.
1.00
Polyphosphates alpha-Synuclein Humans Amyloid Molecular Dynamics Simulation

Classifications MeSH