The Phylogenetic Study of the CRISPR-Cas System in Enterobacteriaceae.
Journal
Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448
Informations de publication
Date de publication:
28 Apr 2023
28 Apr 2023
Historique:
received:
29
12
2022
accepted:
07
04
2023
medline:
1
5
2023
pubmed:
29
4
2023
entrez:
28
4
2023
Statut:
epublish
Résumé
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) system is a bacterial and archaeal adaptive immune system undergoing rapid multifaceted evolution. This evolution plausibly occurs due to the genetic exchanges of complete loci or individual entities. Here, we systematically investigate the evolutionary framework of the CRISPR-Cas system in six Enterobacteriaceae species and its evolutionary association with housekeeping genes as determined by the gyrB phenogram. The strains show high variability in the cas3 gene and the CRISPR1 locus among the closely related Enterobacteriaceae species, hinting at a series of genetic exchanges. The CRISPR leader is conserved, especially toward the distal end, and could be a core region of the leader. The spacers are conserved within the strains of most species, while some strains show unique sets of spacers. However, inter-species spacer conservation was rarely observed. For a considerable proportion of these spacers, protospacer sources were not detected. These results advance our understanding of the dynamics of the CRISPR-Cas system; however, the biological functions are yet to be characterised.
Identifiants
pubmed: 37118221
doi: 10.1007/s00284-023-03298-w
pii: 10.1007/s00284-023-03298-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
196Subventions
Organisme : Department of Science and Technology
ID : ECR_2017_002053
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Rostøl JT, Marraffini L (2019) (Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe 25(2):184–194. https://doi.org/10.1016/j.chom.2019.01.009
doi: 10.1016/j.chom.2019.01.009
pubmed: 30763533
pmcid: 6383810
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7. https://doi.org/10.1186/1745-6150-1-7
doi: 10.1186/1745-6150-1-7
pubmed: 16545108
pmcid: 1462988
Tock MR, Dryden DT (2005) The biology of restriction and anti-restriction. Curr Opin Microbiol 8(4):466–472. https://doi.org/10.1016/j.mib.2005.06.003
doi: 10.1016/j.mib.2005.06.003
pubmed: 15979932
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712. https://doi.org/10.1126/science.1138140
doi: 10.1126/science.1138140
pubmed: 17379808
Molineux IJ (1991) Host-parasite interactions: recent developments in the genetics of abortive phage infections. New Biol 3(3):230–236
pubmed: 1831658
Koonin EV, Makarova KS, Wolf YI (2017) Evolutionary genomics of defense systems in archaea and bacteria. Annu Rev Microbiol 71:233–261. https://doi.org/10.1146/annurev-micro-090816-093830
doi: 10.1146/annurev-micro-090816-093830
pubmed: 28657885
pmcid: 5898197
Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8:172. https://doi.org/10.1186/1471-2105-8-172
doi: 10.1186/1471-2105-8-172
pubmed: 17521438
pmcid: 1892036
Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV (2002) A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30(2):482–496. https://doi.org/10.1093/nar/30.2.482
doi: 10.1093/nar/30.2.482
pubmed: 11788711
pmcid: 99818
Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182. https://doi.org/10.1007/s00239-004-0046-3
doi: 10.1007/s00239-004-0046-3
pubmed: 15791728
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas Č, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, van der Oost J, Barrangou R, Koonin EV (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18(2):67–83. https://doi.org/10.1038/s41579-019-0299-x
doi: 10.1038/s41579-019-0299-x
pubmed: 31857715
Xue C, Sashital DG (2019) Mechanisms of Type I-E and I-F CRISPR-Cas systems in Enterobacteriaceae. EcoSal Plus. https://doi.org/10.1128/ecosalplus.ESP-0008-2018
doi: 10.1128/ecosalplus.ESP-0008-2018
pubmed: 30724156
pmcid: 6368399
Timme RE, Pettengill JB, Allard MW, Strain E, Barrangou R, Wehnes C, Van Kessel JS, Karns JS, Musser SM, Brown EW (2013) Phylogenetic diversity of the enteric pathogen Salmonella enterica subsp. enterica inferred from genome-wide reference-free SNP characters. Genome Biol Evol 5(11):2109–2123. https://doi.org/10.1093/gbe/evt159
doi: 10.1093/gbe/evt159
pubmed: 24158624
pmcid: 3845640
Kushwaha SK, Bhavesh NLS, Abdella B, Lahiri C, Marathe SA (2020) The phylogenomics of CRISPR-Cas system and revelation of its features in Salmonella. Sci Rep 10(1):21156. https://doi.org/10.1038/s41598-020-77890-6
doi: 10.1038/s41598-020-77890-6
pubmed: 33273523
pmcid: 7712790
Pettengill JB, Timme RE, Barrangou R, Toro M, Allard MW, Strain E, Musser SM, Brown EW (2014) The evolutionary history and diagnostic utility of the CRISPR-Cas system within Salmonella enterica ssp. enterica. PeerJ 2:e340. https://doi.org/10.7717/peerj.340
doi: 10.7717/peerj.340
pubmed: 24765574
pmcid: 3994646
Li HY, Kao CY, Lin WH, Zheng PX, Yan JJ, Wang MC, Teng CH, Tseng CC, Wu JJ (2018) Characterization of CRISPR-Cas systems in clinical Klebsiella pneumoniae isolates uncovers its potential association with antibiotic susceptibility. Front Microbiol 9:1595. https://doi.org/10.3389/fmicb.2018.01595
doi: 10.3389/fmicb.2018.01595
pubmed: 30061876
pmcid: 6054925
Yang C, Li P, Su W, Li H, Liu H, Yang G, Xie J, Yi S, Wang J, Cui X, Wu Z, Wang L, Hao R, Jia L, Qiu S, Song H (2015) Polymorphism of CRISPR shows separated natural groupings of Shigella subtypes and evidence of horizontal transfer of CRISPR. RNA Biol 12(10):1109–1120. https://doi.org/10.1080/15476286.2015.1085150
doi: 10.1080/15476286.2015.1085150
pubmed: 26327282
pmcid: 4829275
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM (2021) BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 38(10):4647–4654. https://doi.org/10.1093/molbev/msab199
doi: 10.1093/molbev/msab199
pubmed: 34320186
pmcid: 8476166
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153
doi: 10.1093/bioinformatics/btu153
pubmed: 24642063
Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, Rocha EPC, Vergnaud G, Gautheret D, Pourcel C (2018) CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 46(W1):W246–W251. https://doi.org/10.1093/nar/gky425
doi: 10.1093/nar/gky425
pubmed: 29790974
pmcid: 6030898
Russel J, Pinilla-Redondo R, Mayo-Muñoz D, Shah SA, Sørensen SJ (2020) CRISPRCasTyper: automated identification, annotation, and classification of CRISPR-cas loci. CRISPR J 3(6):462–469. https://doi.org/10.1089/crispr.2020.0059
doi: 10.1089/crispr.2020.0059
pubmed: 33275853
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340
doi: 10.1093/nar/gkh340
pubmed: 15034147
pmcid: 390337
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096
doi: 10.1093/molbev/msy096
pubmed: 29722887
pmcid: 5967553
Yu G (2020) Using ggtree to visualize data on tree-like structures. Curr Protoc Bioinform 69(1):96. https://doi.org/10.1002/cpbi.96
doi: 10.1002/cpbi.96
Letunic I, Bork P (2019) Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47(W1):W256–W259. https://doi.org/10.1093/nar/gkz239
doi: 10.1093/nar/gkz239
pubmed: 30931475
pmcid: 6602468
Biswas A, Gagnon JN, Brouns SJ, Fineran PC, Brown CM (2013) CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol 10(5):817–827. https://doi.org/10.4161/rna.24046
doi: 10.4161/rna.24046
pubmed: 23492433
pmcid: 3737339
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
doi: 10.1016/S0022-2836(05)80360-2
pubmed: 2231712
Koonin EV, Makarova KS (2019) Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B 374(1772):20180087. https://doi.org/10.1098/rstb.2018.0087
doi: 10.1098/rstb.2018.0087
Alkhnbashi OS, Shah SA, Garrett RA, Saunders SJ, Costa F, Backofen R (2016) Characterizing leader sequences of CRISPR loci. Bioinformatics 32(17):i576–i585. https://doi.org/10.1093/bioinformatics/btw454
doi: 10.1093/bioinformatics/btw454
pubmed: 27587677
Horvath P, Romero DA, Coûté-Monvoisin AC, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190(4):1401–1412. https://doi.org/10.1128/JB.01415-07
doi: 10.1128/JB.01415-07
pubmed: 18065539
Fukushima M, Kakinuma K, Kawaguchi R (2002) Phylogenetic analysis of Salmonella, Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence. J Clin Microbiol 40(8):2779–2785. https://doi.org/10.1128/JCM.40.8.2779-2785.2002
doi: 10.1128/JCM.40.8.2779-2785.2002
pubmed: 12149329
pmcid: 120687
Makarova KS, Koonin EV (2015) Annotation and classification of CRISPR-Cas systems. Methods Mol Biol 1311:47–75. https://doi.org/10.1007/978-1-4939-2687-9_4
doi: 10.1007/978-1-4939-2687-9_4
pubmed: 25981466
pmcid: 5901762
Shmakov SA, Utkina I, Wolf YI, Makarova KS, Severinov KV, Koonin EV (2020) CRISPR arrays away from. CRISPR J 3(6):535–549. https://doi.org/10.1089/crispr.2020.0062
doi: 10.1089/crispr.2020.0062
pubmed: 33346707
pmcid: 7757702
Nuñez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA (2014) Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol 21(6):528–534. https://doi.org/10.1038/nsmb.2820
doi: 10.1038/nsmb.2820
pubmed: 24793649
pmcid: 4075942
Hille F, Charpentier E (2016) CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc Lond B. https://doi.org/10.1098/rstb.2015.0496
doi: 10.1098/rstb.2015.0496
Bernick DL, Cox CL, Dennis PP, Lowe TM (2012) Comparative genomic and transcriptional analyses of CRISPR systems across the genus Pyrobaculum. Front Microbiol 3:251. https://doi.org/10.3389/fmicb.2012.00251
doi: 10.3389/fmicb.2012.00251
pubmed: 22811677
pmcid: 3396285
Díez-Villaseñor C, Almendros C, García-Martínez J, Mojica FJ (2010) Diversity of CRISPR loci in Escherichia coli. Microbiology (Reading) 156(Pt 5):1351–1361. https://doi.org/10.1099/mic.0.036046-0
doi: 10.1099/mic.0.036046-0
pubmed: 28206910
Cui L, Wang X, Huang D, Zhao Y, Feng J, Lu Q, Pu Q, Wang Y, Cheng G, Wu M, Dai M (2020) CRISPR-cas3 of Salmonella upregulates bacterial biofilm formation and virulence to host cells by targeting quorum-sensing systems. Pathogens. https://doi.org/10.3390/pathogens9010053
doi: 10.3390/pathogens9010053
pubmed: 33202835
pmcid: 7697964
Medina-Aparicio L, Dávila S, Rebollar-Flores JE, Calva E, Hernández-Lucas I (2018) The CRISPR-Cas system in Enterobacteriaceae. Pathog Dis. https://doi.org/10.1093/femspd/fty002
doi: 10.1093/femspd/fty002
pubmed: 29325038
Sharma N, Das A, Raja P, Marathe SA (2022) The CRISPR-Cas system differentially regulates surface-attached and pellicle biofilm in Salmonella enterica Serovar Typhimurium. Microbiol Spectr. https://doi.org/10.1128/spectrum.00202-22
doi: 10.1128/spectrum.00202-22
pubmed: 36519895
pmcid: 9927495
Kushwaha SK, Narasimhan LP, Chithananthan C, Marathe SA (2022) Clustered regularly interspaced short palindromic repeats-Cas system: diversity and regulation in Enterobacteriaceae. Future Microbiol 17:1249–1267. https://doi.org/10.2217/fmb-2022-0081
doi: 10.2217/fmb-2022-0081
pubmed: 36006039
Beceiro A, Tomás M, Bou G (2013) Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 26(2):185–230. https://doi.org/10.1128/CMR.00059-12
doi: 10.1128/CMR.00059-12
pubmed: 23554414
pmcid: 3623377
Schmidt H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17(1):14–56. https://doi.org/10.1128/cmr.17.1.14-56.2004
doi: 10.1128/cmr.17.1.14-56.2004
pubmed: 14726454
pmcid: 321463
Colavecchio A, Cadieux B, Lo A, Goodridge LD (2017) Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the. Front Microbiol 8:1108. https://doi.org/10.3389/fmicb.2017.01108
doi: 10.3389/fmicb.2017.01108
pubmed: 28676794
pmcid: 5476706
Wu Q, Cui L, Liu Y, Li R, Dai M, Xia Z, Wu M (2022) CRISPR-Cas systems target endogenous genes to impact bacterial physiology and alter mammalian immune responses. Mol Biomed 3(1):22. https://doi.org/10.1186/s43556-022-00084-1
doi: 10.1186/s43556-022-00084-1
pubmed: 35854035
pmcid: 9296731
Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel CL (2014) Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio 5(1):e00928-00913. https://doi.org/10.1128/mBio.00928-13
doi: 10.1128/mBio.00928-13
pubmed: 24473129
pmcid: 3903277
Wu Y, Battalapalli D, Hakeem MJ, Selamneni V, Zhang P, Draz MS, Ruan Z (2021) Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnol 19(1):401. https://doi.org/10.1186/s12951-021-01132-8
doi: 10.1186/s12951-021-01132-8
Hamilton TA, Pellegrino GM, Therrien JA, Ham DT, Bartlett PC, Karas BJ, Gloor GB, Edgell DR (2019) Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nat Commun 10(1):4544. https://doi.org/10.1038/s41467-019-12448-3
doi: 10.1038/s41467-019-12448-3
pubmed: 31586051
pmcid: 6778077