Distinctive Participation of Transcription-Coupled and Global Genome Nucleotide Excision Repair of Pyrimidine Dimers in the Transcribed Strand of Yeast rRNA Genes.


Journal

Biochemistry
ISSN: 1520-4995
Titre abrégé: Biochemistry
Pays: United States
ID NLM: 0370623

Informations de publication

Date de publication:
04 07 2023
Historique:
medline: 5 7 2023
pubmed: 22 6 2023
entrez: 22 6 2023
Statut: ppublish

Résumé

UV light causes the formation of pyrimidine dimers (PDs). Transcription-coupled (TC) nucleotide excision repair (NER) and global genome (GG) NER remove PDs from the transcribed strand (TS) of active genes and the inactive genome, respectively. TC-NER is triggered by elongating RNA polymerases that are blocked at PDs. The yeast rRNA genes are densely loaded with RNA polymerase-I. After UV irradiation, their density increases at the 5'-end of the gene, which results from continuous transcription initiation, followed by elongation and pausing/release at the first encountered PD, from the transcription start site. RNA polymerase-I posed at downstream PDs are released from the TS and are replaced by nucleosomes. Consequently, discrete chromatin structures are formed in the damaged transcribed rRNA genes. Singular assignation of the two NER sub-pathways could therefore be required to eliminate PDs from the TS. To advance our understanding of NER in the dynamic structure of transcribed chromatin, we investigated the repair of PDs at nucleotide resolution in separate rRNA gene coding regions. In the TS, the TC-NER efficiency reflected the density of RNA polymerase-I, and PDs were removed faster in the 5'-end than in the 3'-end of the gene. GG-NER removed PDs from the TS where RNA polymerase-I was transiently replaced by a nucleosome. The two NER sub-pathways inversely participated to remove PDs from the TS. In the non-TS of both nucleosome and non-nucleosome rRNA gene coding regions, GG-NER was solely responsible to remove UV-induced DNA lesions.

Identifiants

pubmed: 37347542
doi: 10.1021/acs.biochem.3c00128
doi:

Substances chimiques

Pyrimidine Dimers 0
Chromatin 0
Nucleosomes 0
RNA Polymerase I EC 2.7.7.6

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2029-2040

Auteurs

Audrey Paillé (A)

Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke QC J1H 5N4, Canada.

François Peyresaubes (F)

Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke QC J1H 5N4, Canada.

Thomas Gardrat (T)

Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke QC J1H 5N4, Canada.

Carlos Zeledon (C)

Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke QC J1H 5N4, Canada.

Antonio Conconi (A)

Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke QC J1H 5N4, Canada.

Articles similaires

Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
Metabolic Networks and Pathways Saccharomyces cerevisiae Computational Biology Synthetic Biology Computer Simulation
DNA Glycosylases Nucleosomes Humans 8-Hydroxy-2'-Deoxyguanosine DNA Repair

Classifications MeSH