Identification and expression characteristics of NLP (NIN-like protein) gene family in pepper (Capsicum annuum L.).


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
Aug 2023
Historique:
received: 10 10 2022
accepted: 12 06 2023
medline: 31 7 2023
pubmed: 26 6 2023
entrez: 26 6 2023
Statut: ppublish

Résumé

Pepper (Capsicum annum L.) is the main crop in the vegetable industry. The growth and development of peppers are regulated by nitrate, but there is limited research on the molecular mechanisms of nitrate absorption and assimilation in peppers. A plant specific transcription factor NLP plays an important role in nitrate signal transduction. In this study, a total of 7 NLP members were identified based on pepper genome data. Two nitrogen transport elements (GCN4) were found in the CaNLP5 promoter. In the phylogenetic tree, CaNLP members are divided into three branches, with pepper NLP and tomato NLP having the closest genetic relationship. The expression levels of CaNLP1, CaNLP3, and CaNLP4 are relatively high in the roots, stems, and leaves. The expression level of CaNLP7 gene is relatively high during the 5-7 days of pepper fruit color transformation. After various non-Biotic stress and hormone treatments, the expression of CaNLP1 was at a high level. The expression of CaNLP3 and CaNLP4 was down regulated in leaves, but up regulated in roots. Under conditions of nitrogen deficiency and sufficient nitrate, the expression patterns of NLP genes in pepper leaves and roots were determined. These results provide important insights into the multiple functions of CaNLPs in regulating nitrate absorption and transport.

Sections du résumé

BACKGROUND BACKGROUND
Pepper (Capsicum annum L.) is the main crop in the vegetable industry. The growth and development of peppers are regulated by nitrate, but there is limited research on the molecular mechanisms of nitrate absorption and assimilation in peppers. A plant specific transcription factor NLP plays an important role in nitrate signal transduction.
METHODS AND RESULTS RESULTS
In this study, a total of 7 NLP members were identified based on pepper genome data. Two nitrogen transport elements (GCN4) were found in the CaNLP5 promoter. In the phylogenetic tree, CaNLP members are divided into three branches, with pepper NLP and tomato NLP having the closest genetic relationship. The expression levels of CaNLP1, CaNLP3, and CaNLP4 are relatively high in the roots, stems, and leaves. The expression level of CaNLP7 gene is relatively high during the 5-7 days of pepper fruit color transformation. After various non-Biotic stress and hormone treatments, the expression of CaNLP1 was at a high level. The expression of CaNLP3 and CaNLP4 was down regulated in leaves, but up regulated in roots. Under conditions of nitrogen deficiency and sufficient nitrate, the expression patterns of NLP genes in pepper leaves and roots were determined.
CONCLUSION CONCLUSIONS
These results provide important insights into the multiple functions of CaNLPs in regulating nitrate absorption and transport.

Identifiants

pubmed: 37358766
doi: 10.1007/s11033-023-08587-y
pii: 10.1007/s11033-023-08587-y
doi:

Substances chimiques

Nitrates 0
Transcription Factors 0
Nitrogen N762921K75
Plant Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6655-6668

Subventions

Organisme : Genetic diversity analysis and core germplasm construction of pod pepper germplasm resources in southwest China
ID : 31760576

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Bloom AJ (2015) The increasing importance of distinguishing among plant nitrogen sources. Curr Opin Plant Biol 25:10–16. https://doi.org/10.1016/j.pbi.2015.03.002
doi: 10.1016/j.pbi.2015.03.002 pubmed: 25899331
Fredes I, Moreno S, Díaz FP, Gutiérrez RA (2019) Nitrate signaling and the control of Arabidopsis growth and development. Curr Opin Plant Biol 47:112–118. https://doi.org/10.1016/j.pbi.2018.10.004
doi: 10.1016/j.pbi.2018.10.004 pubmed: 30496968
Ohyama T. (2010). Nitrogen as a major essential element of plants (Vol. 37): Research Signpost
Tegeder M, Masclaux Daubresse C (2018) Source and sink mechanisms of nitrogen transport and use. New Phytol 217(1):35–53. https://doi.org/10.1111/nph.14876
doi: 10.1111/nph.14876 pubmed: 29120059
Baenas N, Belović M, Ilic N, Moreno DA, García-Viguera C (2019) Industrial use of pepper (Capsicum annum L.) derived products: technological benefits and biological advantages. Food Chem 274:872–885. https://doi.org/10.1016/j.foodchem.2018.09.047
doi: 10.1016/j.foodchem.2018.09.047 pubmed: 30373022
Jarret RL, Barboza GE, Da Costa Batista FR, Berke T, Chou Y, Hulse-Kemp A et al (2019) Capsicum-an abbreviated compendium. J Am Soc Hortic Sci 144(1):3–22. https://doi.org/10.21273/JASHS04446-18
doi: 10.21273/JASHS04446-18
Schauser L, Handberg K, Sandal N, Stiller J, Thykjær T, Pajuelo E et al (1998) Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol General Genet MGG 259(4):414–423. https://doi.org/10.1007/s004380050831
doi: 10.1007/s004380050831
Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402(6758):191–195. https://doi.org/10.1038/46058
doi: 10.1038/46058 pubmed: 10647012
Schauser L, Wieloch W, Stougaard J (2005) Evolution of NIN-like proteins in Arabidopsis, rice, and lotus japonicus. J Mol Evol 60(2):229–237. https://doi.org/10.1007/s00239-004-0144-2
doi: 10.1007/s00239-004-0144-2 pubmed: 15785851
Chardin C, Girin T, Roudier F, Meyer C, Krapp A (2014) The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development. J Exp Bot 65(19):5577–5587. https://doi.org/10.1093/jxb/eru261
doi: 10.1093/jxb/eru261 pubmed: 24987011
Hsin K, Yang T, Lee Y, Cheng Y (2021) Phylogenetic and structural analysis of NIN-like proteins with a type I/II PB1 domain that regulates oligomerization for nitrate response. Front Plant Sci 12:672035. https://doi.org/10.3389/fpls.2021.672035
doi: 10.3389/fpls.2021.672035 pubmed: 34135927 pmcid: 8200828
Sumimoto H, Kamakura S (2007) Ito T (2007) Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants. Sci STKE 401:e6. https://doi.org/10.1126/stke.4012007re6
doi: 10.1126/stke.4012007re6
Ge M, Liu Y, Jiang L, Wang Y, Lv Y, Zhou L et al (2018) Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Plant Growth Regul 84(1):95–105. https://doi.org/10.1007/s10725-017-0324-x
doi: 10.1007/s10725-017-0324-x
Lin Z, Guo C, Lou S, Jin S, Zeng W, Guo Y et al (2021) Functional analyses unveil the involvement of moso bamboo (Phyllostachys edulis) group I and II NIN-LIKE PROTEINS in nitrate signaling regulation. Plant Sci 306:110862. https://doi.org/10.1016/j.plantsci.2021.110862
doi: 10.1016/j.plantsci.2021.110862 pubmed: 33775367
Liu M, Zhi X, Wang Y, Wang Y (2021) Genome-wide survey and expression analysis of NIN-like Protein (NLP) genes reveals its potential roles in the response to nitrate signaling in tomato. Bmc Plant Biol 21(1):1–12. https://doi.org/10.1186/s12870-021-03116-0
doi: 10.1186/s12870-021-03116-0
Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet Mercey S et al (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J 57(3):426–435. https://doi.org/10.1111/j.1365-313X.2008.03695.x
doi: 10.1111/j.1365-313X.2008.03695.x pubmed: 18826430
Yu L, Wu J, Tang H, Yuan Y, Wang S, Wang Y et al (2016) Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and-sufficient conditions by enhancing nitrogen and carbon assimilation. Sci Rep-Uk 6(1):1–13. https://doi.org/10.1038/srep27795
doi: 10.1038/srep27795
Konishi M, Okitsu T, Yanagisawa S (2021) Nitrate-responsive NIN-like protein transcription factors perform unique and redundant roles in Arabidopsis. J Exp Bot 72(15):5735–5750. https://doi.org/10.1093/jxb/erab246
doi: 10.1093/jxb/erab246 pubmed: 34050740
Liu F, Xu Y, Chang K, Li S, Liu Z, Qi S et al (2019) The long noncoding RNA T5120 regulates nitrate response and assimilation in Arabidopsis. New Phytol 224(1):117–131. https://doi.org/10.1111/nph.16038
doi: 10.1111/nph.16038 pubmed: 31264223
Yan D, Easwaran V, Chau V, Okamoto M, Ierullo M, Kimura M et al (2016) NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nat Commun 7(1):1–11. https://doi.org/10.1038/ncomms13179
doi: 10.1038/ncomms13179
Cao H, Qi S, Sun M, Li Z, Yang Y, Crawford NM et al (2017) Overexpression of the maize ZmNLP6 and ZmNLP8 can complement the Arabidopsis nitrate regulatory mutant nlp7 by restoring nitrate signaling and assimilation. Front Plant Sci 8:1703. https://doi.org/10.3389/fpls.2017.01703
doi: 10.3389/fpls.2017.01703 pubmed: 29051766 pmcid: 5634353
Luo Z, Moreau C, Wang J, Frugier F, Xie F (2022) NLP1 binds the CEP1 signalling peptide promoter to repress its expression in response to nitrate. New Phytol 234(5):1547–1552. https://doi.org/10.1111/nph.18062
doi: 10.1111/nph.18062 pubmed: 35243632
Liu K, Niu Y, Konishi M, Wu Y, Du H, Sun Chung H et al (2017) Discovery of nitrate-CPK-NLP signalling in central nutrient–growth networks. Nature 545(7654):311–316. https://doi.org/10.1038/nature22077
doi: 10.1038/nature22077 pubmed: 28489820 pmcid: 5823009
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y et al (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202. https://doi.org/10.1016/j.molp.2020.06.009
doi: 10.1016/j.molp.2020.06.009 pubmed: 32585190
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer EL et al (2021) Pfam: the protein families database in 2021. Nucleic Acids Res 49(D1):D412–D419. https://doi.org/10.1093/nar/gkaa913
doi: 10.1093/nar/gkaa913 pubmed: 33125078
Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C (2021) Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Res 49(W1):W216–W227. https://doi.org/10.1093/nar/gkab225
doi: 10.1093/nar/gkab225 pubmed: 33849055 pmcid: 8265094
Mu X, Luo J (2019) Evolutionary analyses of NIN-like proteins in plants and their roles in nitrate signaling. Cell Mol Life Sci 76(19):3753–3764. https://doi.org/10.1007/s00018-019-03164-8
doi: 10.1007/s00018-019-03164-8 pubmed: 31161283
Zhao J. (2012). Screening of Reference Genes and Inentification of NBS-LRR Gene Analogs in Pepper (Capsicum Annuum L.)., Nanjing Agricultural University.
Gonzalez DH (2016) Introduction to transcription factor structure and function. In: Gonzalez DH (ed) Plant transcription factors. Elsevier
Kang W, Kim S, Lee H, Choi D, Yeom S (2016) Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper. Sci Rep-Uk 6(1):1–12. https://doi.org/10.1038/srep33332
doi: 10.1038/srep33332
Gai W, Ma X, Qiao Y, Shi B, Ul Haq S, Li Q et al (2020) Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.): CabZIP25 positively modulates the salt tolerance. Front Plant Sci 11:139. https://doi.org/10.3389/fpls.2020.00139
doi: 10.3389/fpls.2020.00139 pubmed: 32174937 pmcid: 7054902
Arce-Rodríguez ML, Martínez O, Ochoa-Alejo N (2021) Genome-wide identification and analysis of the MYB transcription factor gene family in chili pepper (Capsicum spp.). Int J Mol Sci 22(5):2229. https://doi.org/10.3390/ijms22052229
doi: 10.3390/ijms22052229 pubmed: 33668082 pmcid: 7956556
Zhu MX, Zhang YR, Yang YS, Yang XL, Wang CY, Deng Y et al (2021) Identification and expression analysis of NLP transcription factor family of Chenopodium quinoa Willd. Acta Agriculturae Boreali-Sinica 36(04):37–46. https://doi.org/10.7668/hbnxb.20191913
doi: 10.7668/hbnxb.20191913
Wang X, Chen XX, Li HL, Zhang FJ, Zhao XY, Han YP et al (2019) Genome-wide identification and expression pattern analysis of NLP (nin-like protein) transcription factor gene family in apple. Scientia Agricultura Sinica 52(23):4333–4349. https://doi.org/10.3864/j.issn.0578-1752.2019.23.014
doi: 10.3864/j.issn.0578-1752.2019.23.014
Büyük İ, Aybüke O, Aksoy T, Sumer A (2021) The NIN-LIKE PROTEIN (NLP) family in common bean: genome-wide identification, evolution and expression analysis. Commun Faculty Sci Univ Ankara Ser C Biol 30(1):58–84
doi: 10.53447/communc.869501
Liu M, Chang W, Fan Y, Sun W, Qu C, Zhang K et al (2018) Genome-wide identification and characterization of NODULE-INCEPTION-like protein (NLP) family genes in Brassica napus. Int J Mol Sci 19(8):2270. https://doi.org/10.3390/ijms19082270
doi: 10.3390/ijms19082270 pubmed: 30072649 pmcid: 6121332
Yuan TT, Zhu CL, Li ZY, Song XZ, Gao ZM (2021) Identification of NLP transcription factors of Phyllostachys edulis and their expression patterns in response to nitrogen. Forest Res 34(05):39–48. https://doi.org/10.13275/j.cnki.lykxyj.2021.005.005
doi: 10.13275/j.cnki.lykxyj.2021.005.005
Marchive C, Roudier F, Castaings L, Bréhaut V, Blondet E, Colot V et al (2013) Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun 4(1):1–9. https://doi.org/10.1038/ncomms2650
doi: 10.1038/ncomms2650
Magwanga RO, Kirungu JN, Lu P, Cai X, Zhou Z, Xu Y et al (2019) Map-based functional analysis of the GhNLP genes reveals their roles in enhancing tolerance to N-deficiency in cotton. Int J Mol Sci 20(19):4953. https://doi.org/10.3390/ijms20194953
doi: 10.3390/ijms20194953 pubmed: 31597268 pmcid: 6801916
Wu XY, Xu ZR, Qu CP, Li W, Sun Q, Liu GJ (2014) Genome-wide identification and characterization of NLP gene family in Populus trichocarpa. Bull Bot Res 34(01):37–43. https://doi.org/10.7525/j.issn.1673-5102.2014.01.006
doi: 10.7525/j.issn.1673-5102.2014.01.006
Soyano T, Shimoda Y, Hayashi M (2015) Nodule inception antagonistically regulates gene expression with nitrate in Lotus japonicus. Plant Cell Physiol 56(2):368–376. https://doi.org/10.1093/pcp/pcu168
doi: 10.1093/pcp/pcu168 pubmed: 25416287
Konishi M, Yanagisawa S (2013) Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat Commun 4(1):1–9. https://doi.org/10.1038/ncomms2621
doi: 10.1038/ncomms2621
Camargo A, Llamas Á, Schnell RA, Higuera JJ, González-Ballester D, Lefebvre PA et al (2007) Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell 19(11):3491–3503. https://doi.org/10.1105/tpc.106.045922
doi: 10.1105/tpc.106.045922 pubmed: 18024571 pmcid: 2174885
Kumar A, Batra R, Gahlaut V, Gautam T, Kumar S, Sharma M et al (2018) Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat (Triticum aestivum L.). PLoS ONE 13(12):e208409. https://doi.org/10.1371/journal.pone.0208409
doi: 10.1371/journal.pone.0208409
Rhaman MS, Imran S, Rauf F, Khatun M, Baskin CC, Murata Y et al (2020) Seed priming with phytohormones: an effective approach for the mitigation of abiotic stress. Plants 10(1):37. https://doi.org/10.3390/plants10010037
doi: 10.3390/plants10010037 pubmed: 33375667 pmcid: 7824124
Vishal B, Kumar PP (2018) Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Front Plant Sci 9:838. https://doi.org/10.3389/fpls.2018.00838
doi: 10.3389/fpls.2018.00838 pubmed: 29973944 pmcid: 6019495
Liu T, Ren T, White PJ, Cong R, Lu J (2018) Storage nitrogen co-ordinates leaf expansion and photosynthetic capacity in winter oilseed rape. J Exp Bot 69(12):2995–3007. https://doi.org/10.1093/jxb/ery134
doi: 10.1093/jxb/ery134 pubmed: 29669007 pmcid: 5972566
Cao XJ, Lu XP, Xiong J, Li J, Wu Q, Zhou FF et al (2016) Cloning and expression of Poncirus Trifoliata (L.) Raf. NIN- like transcription factors under different water conditions. Scientia Agricultura Sinica 49(2):381–390. https://doi.org/10.3864/j.issn.0578-1752.2016.02.018
doi: 10.3864/j.issn.0578-1752.2016.02.018
Xie S, Cao S, Liu Q, Xiong X, Lu X (2013) Effect of water deficit stress on isotope 15N uptake and nitrogen metabolism of newhall orange and Yamasitaka Mandarin seedling. J Life Sci 7(11):1170

Auteurs

Yuan Wu (Y)

College of Agriculture, Guizhou University, Guiyang, 550025, China.
Industry Technology Research Academy of Pepper, Guizhou University, Guiyang, 550025, China.
Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China.

Shi-Xian Su (SX)

College of Agriculture, Guizhou University, Guiyang, 550025, China.
Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China.

Tao Wang (T)

College of Agriculture, Guizhou University, Guiyang, 550025, China.
Industry Technology Research Academy of Pepper, Guizhou University, Guiyang, 550025, China.

Gui-Hua Peng (GH)

Research Institute of Pepper, Zunyi, 563000, Guizhou Province, China.

Lei He (L)

Research Institute of Pepper, Zunyi, 563000, Guizhou Province, China.

Cha Long (C)

College of Agriculture, Guizhou University, Guiyang, 550025, China.
Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China.

Wei Li (W)

College of Agriculture, Guizhou University, Guiyang, 550025, China. wli@gzu.edu.cn.
Industry Technology Research Academy of Pepper, Guizhou University, Guiyang, 550025, China. wli@gzu.edu.cn.
Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China. wli@gzu.edu.cn.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH