Characterization of RNA driven structural changes in full length RIG-I leading to its agonism or antagonism.


Journal

Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011

Informations de publication

Date de publication:
22 09 2023
Historique:
accepted: 20 07 2023
revised: 30 06 2023
received: 27 11 2022
medline: 25 9 2023
pubmed: 24 7 2023
entrez: 24 7 2023
Statut: ppublish

Résumé

RIG-I (retinoic acid inducible gene-I) can sense subtle differences between endogenous and viral RNA in the cytoplasm, triggering an anti-viral immune response through induction of type I interferons (IFN) and other inflammatory mediators. Multiple crystal and cryo-EM structures of RIG-I suggested a mechanism in which the C-terminal domain (CTD) is responsible for the recognition of viral RNA with a 5'-triphoshate modification, while the CARD domains serve as a trigger for downstream signaling, leading to the induction of type I IFN. However, to date contradicting conclusions have been reached around the role of ATP in the mechanism of the CARD domains ejection from RIG-I's autoinhibited state. Here we present an application of NMR spectroscopy to investigate changes induced by the binding of 5'-triphosphate and 5'-OH dsRNA, both in the presence and absence of nucleotides, to full length RIG-I with all its methionine residues selectively labeled (Met-[ϵ-13CH3]). With this approach we were able to identify residues on the CTD, helicase domain, and CARDs that served as probes to sense RNA-induced conformational changes in those respective regions. Our results were analyzed in the context of either agonistic or antagonistic RNAs, by and large supporting a mechanism proposed by the Pyle Lab in which CARD release is primarily dependent on the RNA binding event.

Identifiants

pubmed: 37486777
pii: 7230088
doi: 10.1093/nar/gkad606
pmc: PMC10516622
doi:

Substances chimiques

DEAD Box Protein 58 EC 3.6.4.13
Interferon Type I 0
RNA, Double-Stranded 0
RNA, Viral 0
Trans-Activators 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

9356-9368

Informations de copyright

© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.

Références

Sci Adv. 2019 Oct 02;5(10):eaax3641
pubmed: 31616790
Cell. 2018 May 3;173(4):906-919.e13
pubmed: 29706547
Curr Opin Immunol. 2015 Feb;32:48-53
pubmed: 25594890
Immunol Rev. 2011 Sep;243(1):91-8
pubmed: 21884169
Front Immunol. 2018 Jan 05;8:1942
pubmed: 29354136
Nucleic Acids Res. 2016 Jan 29;44(2):896-909
pubmed: 26612866
Mol Cell. 2016 May 19;62(4):586-602
pubmed: 27203181
Cell. 2011 Oct 14;147(2):259-61
pubmed: 22000004
Curr Opin Virol. 2017 Feb;22:36-43
pubmed: 27951430
Microbiol Mol Biol Rev. 2011 Sep;75(3):468-90, second page of table of contents
pubmed: 21885681
Crit Rev Biochem Mol Biol. 2017 Aug;52(4):425-460
pubmed: 28524749
Nature. 2007 Apr 19;446(7138):916-920
pubmed: 17392790
Nucleic Acids Res. 2011 Mar;39(4):1565-75
pubmed: 20961956
Mol Cell. 2023 Jan 5;83(1):90-104.e4
pubmed: 36521492
Mol Cell. 2022 Nov 3;82(21):4131-4144.e6
pubmed: 36272408
J Exp Med. 2008 Jul 7;205(7):1601-10
pubmed: 18591409
Elife. 2015 Nov 26;4:
pubmed: 26609812
Nucleic Acids Res. 2014 Oct;42(18):11601-11
pubmed: 25217590
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):596-601
pubmed: 26733676
Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):582-7
pubmed: 17190814
J Biol Chem. 2007 May 25;282(21):15315-8
pubmed: 17395582
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12067-72
pubmed: 19574455
Mol Cell. 2019 Oct 17;76(2):243-254
pubmed: 31626748
Mol Immunol. 2017 Jun;86:23-37
pubmed: 28249680
J Biol Chem. 2017 Jun 2;292(22):9000-9009
pubmed: 28411239
ACS Omega. 2018 Apr 30;3(4):3786-3795
pubmed: 30023880
J Biol Chem. 2008 Apr 4;283(14):9488-96
pubmed: 18268020
Cell Rep. 2019 Feb 19;26(8):2019-2027.e4
pubmed: 30784585
Nature. 2014 May 1;509(7498):110-4
pubmed: 24590070
J Immunol. 2005 Sep 1;175(5):2851-8
pubmed: 16116171
Nucleic Acids Res. 2015 Jan;43(2):1216-30
pubmed: 25539915
Cell Rep. 2019 Dec 17;29(12):3807-3815.e3
pubmed: 31851914
Structure. 2012 Nov 7;20(11):1983-8
pubmed: 23022350
Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3579-83
pubmed: 9108019
Nature. 2011 Sep 25;479(7373):423-7
pubmed: 21947008
Curr Opin Struct Biol. 1999 Oct;9(5):594-601
pubmed: 10508768
Nucleic Acids Res. 2018 Apr 6;46(6):3169-3186
pubmed: 29346611
Structure. 2012 Apr 4;20(4):573-81
pubmed: 22483105
BMC Biol. 2015 Jul 28;13:54
pubmed: 26215161
J Virol. 2005 Mar;79(5):2689-99
pubmed: 15708988
Mol Cell. 2014 Aug 21;55(4):511-23
pubmed: 25018021
Immune Netw. 2016 Aug;16(4):249-55
pubmed: 27574504
J Biomol Screen. 2001 Dec;6(6):429-40
pubmed: 11788061
Cell. 2011 Oct 14;147(2):423-35
pubmed: 22000019

Auteurs

Justyna Sikorska (J)

Merck & Co., Inc., Rahway, NJ, USA.

Yan Hou (Y)

Merck & Co., Inc., Rahway, NJ, USA.

Paul Chiurazzi (P)

Merck & Co., Inc., Rahway, NJ, USA.

Tony Siu (T)

Merck & Co., Inc., Rahway, NJ, USA.

Gretchen A Baltus (GA)

Merck & Co., Inc., Rahway, NJ, USA.

Payal Sheth (P)

Merck & Co., Inc., Rahway, NJ, USA.

David G McLaren (DG)

Merck & Co., Inc., Rahway, NJ, USA.

Quang Truong (Q)

Merck & Co., Inc., Rahway, NJ, USA.

Craig A Parish (CA)

Merck & Co., Inc., Rahway, NJ, USA.

Daniel F Wyss (DF)

Merck & Co., Inc., Rahway, NJ, USA.

Articles similaires

Humans Interferon Type I Ross River virus Encephalitis, Tick-Borne Antibodies, Neutralizing
Humans Endoribonucleases RNA, Messenger RNA Caps Gene Expression Regulation

The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma.

Arianna Giacomini, Sara Taranto, Giorgia Gazzaroli et al.
1.00
Humans Multiple Myeloma Receptors, Fibroblast Growth Factor Fibroblast Growth Factors Proto-Oncogene Proteins c-myc
Animals Lung India Sheep Transcriptome

Classifications MeSH