Netrin-1 blockade inhibits tumour growth and EMT features in endometrial cancer.
Animals
Female
Humans
Mice
Biopsy
Carboplatin
/ administration & dosage
Disease Models, Animal
Drug Resistance, Neoplasm
/ drug effects
Endometrial Neoplasms
/ drug therapy
Epithelial-Mesenchymal Transition
/ drug effects
Gene Expression Profiling
Netrin-1
/ antagonists & inhibitors
Paclitaxel
/ administration & dosage
RNA-Seq
Single-Cell Gene Expression Analysis
Tumor Microenvironment
/ drug effects
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
22
04
2022
accepted:
23
06
2023
medline:
11
8
2023
pubmed:
3
8
2023
entrez:
2
8
2023
Statut:
ppublish
Résumé
Netrin-1 is upregulated in cancers as a protumoural mechanism
Identifiants
pubmed: 37532934
doi: 10.1038/s41586-023-06367-z
pii: 10.1038/s41586-023-06367-z
pmc: PMC10412451
doi:
Substances chimiques
Carboplatin
BG3F62OND5
Netrin-1
158651-98-0
NTN1 protein, human
0
Ntn1 protein, mouse
0
Paclitaxel
P88XT4IS4D
Types de publication
Clinical Trial, Phase I
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
409-416Informations de copyright
© 2023. The Author(s).
Références
Mehlen, P., Delloye-Bourgeois, C. & Chédotal, A. Novel roles for Slits and netrins: axon guidance cues as anticancer targets? Nat. Rev. Cancer 11, 188–197 (2011).
doi: 10.1038/nrc3005
pubmed: 21326323
Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).
doi: 10.1038/nrclinonc.2017.44
pubmed: 28397828
pmcid: 5720366
Brisset, M., Grandin, M., Bernet, A., Mehlen, P. & Hollande, F. Dependence receptors: new targets for cancer therapy. EMBO Mol. Med. 13, e14495 (2021).
doi: 10.15252/emmm.202114495
pubmed: 34542930
pmcid: 8573599
Wu, Z. et al. Long-range guidance of spinal commissural axons by netrin1 and sonic hedgehog from midline floor plate cells. Neuron 101, 635–647 (2019).
doi: 10.1016/j.neuron.2018.12.025
pubmed: 30661738
Sung, P.-J. et al. Cancer-associated fibroblasts produce netrin-1 to control cancer cell plasticity. Cancer Res. 79, 3651–3661 (2019).
doi: 10.1158/0008-5472.CAN-18-2952
pubmed: 31088838
Paradisi, A. et al. NF-κB regulates netrin-1 expression and affects the conditional tumor suppressive activity of the netrin-1 receptors. Gastroenterology 135, 1248–1257 (2008).
doi: 10.1053/j.gastro.2008.06.080
pubmed: 18692059
Paradisi, A. et al. Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression. Proc. Natl Acad. Sci. USA 106, 17146–17151 (2009).
doi: 10.1073/pnas.0901767106
pubmed: 19721007
pmcid: 2761333
Fitamant, J. et al. Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc. Natl Acad. Sci. USA 105, 4850–4855 (2008).
doi: 10.1073/pnas.0709810105
pubmed: 18353983
pmcid: 2290782
Delloye-Bourgeois, C. et al. Interference with netrin-1 and tumor cell death in non-small cell lung cancer. J. Natl Cancer Inst. 101, 237–247 (2009).
doi: 10.1093/jnci/djn491
pubmed: 19211441
Delloye-Bourgeois, C. et al. Netrin-1 acts as a survival factor for aggressive neuroblastoma. J. Exp. Med. 206, 833–847 (2009).
doi: 10.1084/jem.20082299
pubmed: 19349462
pmcid: 2715117
Broutier, L. et al. Targeting netrin‐1/ DCC interaction in diffuse large B‐cell and mantle cell lymphomas. EMBO Mol. Med. 8, 96–104 (2016).
doi: 10.15252/emmm.201505480
pubmed: 26882243
pmcid: 4734837
Boussouar, A. et al. Netrin-1 and its receptor DCC are causally implicated in melanoma progression. Cancer Res. 80, 747–756 (2020).
doi: 10.1158/0008-5472.CAN-18-1590
pubmed: 31806640
Grandin, M. et al. Structural decoding of the netrin-1/UNC5 interaction and its therapeutical implications in cancers. Cancer Cell 29, 173–185 (2016).
doi: 10.1016/j.ccell.2016.01.001
pubmed: 26859457
Cassier, P. et al. A first in human, phase I trial of NP137, a first-in-class antibody targeting netrin-1, in patients with advanced refractory solid tumors. Ann. Oncol. 30, v159 (2019).
doi: 10.1093/annonc/mdz244.001
Mirantes, C. et al. An inducible knock-out mouse to model cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias. Dis. Model. Mech6, 710–720 (2013).
Yan, W. et al. Netrin-1 induces epithelial–mesenchymal transition and promotes hepatocellular carcinoma invasiveness. Dig. Dis. Sci. 59, 1213–1221 (2014).
doi: 10.1007/s10620-013-3016-z
pubmed: 24442237
Jin, X. et al. Netrin-1 interference potentiates epithelial-to-mesenchymal transition through the PI3K/AKT pathway under the hypoxic microenvironment conditions of non-small cell lung cancer. Int. J. Oncol. 54, 1457–1465 (2019).
Zhang, X. et al. Netrin-1 elicits metastatic potential of non-small cell lung carcinoma cell by enhancing cell invasion, migration and vasculogenic mimicry via EMT induction. Cancer Gene Ther. 25, 18–26 (2018).
doi: 10.1038/s41417-017-0008-8
pubmed: 29234153
Chen, Y. et al. Bradykinin promotes migration and invasion of hepatocellular carcinoma cells through TRPM7 and MMP2. Exp. Cell. Res. 349, 68–76 (2016).
doi: 10.1016/j.yexcr.2016.09.022
pubmed: 27693494
Mak, M. P. et al. A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clin. Cancer Res. 22, 609–620 (2016).
doi: 10.1158/1078-0432.CCR-15-0876
pubmed: 26420858
Bignotti, E. et al. Diagnostic and prognostic impact of serum HE4 detection in endometrial carcinoma patients. Br. J. Cancer 104, 1418–1425 (2011).
doi: 10.1038/bjc.2011.109
pubmed: 21468050
pmcid: 3101927
DeConti, R. C. Chemotherapy of squamous cell carcinoma of the skin. Semin. Oncol. 39, 145–149 (2012).
doi: 10.1053/j.seminoncol.2012.01.002
pubmed: 22484186
Gibert, B. & Mehlen, P. Dependence receptors and cancer: addiction to trophic ligands. Cancer Res. 75, 5171–5175 (2015).
doi: 10.1158/0008-5472.CAN-14-3652
pubmed: 26627011
Paradisi, A. et al. Combining chemotherapeutic agents and netrin‐1 interference potentiates cancer cell death. EMBO Mol. Med. 5, 1821–1834 (2013).
doi: 10.1002/emmm.201302654
pubmed: 24293316
pmcid: 3914534
Lambert, A. W. & Weinberg, R. A. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat. Rev. Cancer 21, 325–338 (2021).
doi: 10.1038/s41568-021-00332-6
pubmed: 33547455
Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).
doi: 10.1038/s41568-019-0238-1
pubmed: 31980749
pmcid: 7046529
Gonzalez, H., Hagerling, C. & Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 32, 1267–1284 (2018).
doi: 10.1101/gad.314617.118
pubmed: 30275043
pmcid: 6169832
Brabletz, S., Schuhwerk, H., Brabletz, T. & Stemmler, M. P. Dynamic EMT: a multi‐tool for tumor progression. EMBO J. 40, e108647 (2021).
doi: 10.15252/embj.2021108647
pubmed: 34459003
pmcid: 8441439