Genome-wide identification and analysis of the evolution and expression pattern of the SBP gene family in two Chimonanthus species.
Chimonanthus praecox
Chimonanthus salicifolius
Comparative analysis
Plant flowering
SBP
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
20
07
2023
accepted:
05
09
2023
medline:
10
11
2023
pubmed:
26
9
2023
entrez:
25
9
2023
Statut:
ppublish
Résumé
Chimonanthus praecox and Chimonanthus salicifolius are closely related species that diverged approximately six million years ago. While both C. praecox and C. salicifolius could withstand brief periods of low temperatures of - 15 °C. Their flowering times are different, C. praecox blooms in early spring, whereas C. salicifolius blooms in autumn. The SBP-box (SQUAMOSA promoter-binding protein) is a plant-specific gene family that plays a crucial vital role in regulating plant flowering. Although extensively studied in various plants, the SBP gene family remains uncharacterized in Calycanthaceae. We conducted genome-wide identification of SBP genes in both C. praecox and C. salicifolius and comprehensively characterized the chromosomal localization, gene structure, conserved motifs, and domains of the identified SBP genes. In total, 15 and 18 SBP genes were identified in C. praecox and C. salicifolius, respectively. According to phylogenetic analysis, the SBP genes from Arabidopsis, C. praecox, and C. salicifolius were clustered into eight groups. Analysis of the gene structure and conserved protein motifs showed that SBP proteins of the same subfamily have similar motif structures. The expression patterns of SBP genes were analyzed using transcriptome data. The results revealed that more than half of the genes exhibited lower expression levels in leaves than in flowers, suggesting their potential involvement in the flower development process and may be linked to the winter and autumn flowering of C. praecox and C. salicifolius. Thirty-three SBPs were identified in C. praecox and C. salicifolius. The evolutionary characteristics and expression patterns were examined in this study. These results provide valuable information to elucidate the evolutionary relationships of the SBP family and help determine the functional characteristics of the SBP genes in subsequent studies.
Sections du résumé
BACKGROUND
BACKGROUND
Chimonanthus praecox and Chimonanthus salicifolius are closely related species that diverged approximately six million years ago. While both C. praecox and C. salicifolius could withstand brief periods of low temperatures of - 15 °C. Their flowering times are different, C. praecox blooms in early spring, whereas C. salicifolius blooms in autumn. The SBP-box (SQUAMOSA promoter-binding protein) is a plant-specific gene family that plays a crucial vital role in regulating plant flowering. Although extensively studied in various plants, the SBP gene family remains uncharacterized in Calycanthaceae.
METHODS AND RESULTS
RESULTS
We conducted genome-wide identification of SBP genes in both C. praecox and C. salicifolius and comprehensively characterized the chromosomal localization, gene structure, conserved motifs, and domains of the identified SBP genes. In total, 15 and 18 SBP genes were identified in C. praecox and C. salicifolius, respectively. According to phylogenetic analysis, the SBP genes from Arabidopsis, C. praecox, and C. salicifolius were clustered into eight groups. Analysis of the gene structure and conserved protein motifs showed that SBP proteins of the same subfamily have similar motif structures. The expression patterns of SBP genes were analyzed using transcriptome data. The results revealed that more than half of the genes exhibited lower expression levels in leaves than in flowers, suggesting their potential involvement in the flower development process and may be linked to the winter and autumn flowering of C. praecox and C. salicifolius.
CONCLUSION
CONCLUSIONS
Thirty-three SBPs were identified in C. praecox and C. salicifolius. The evolutionary characteristics and expression patterns were examined in this study. These results provide valuable information to elucidate the evolutionary relationships of the SBP family and help determine the functional characteristics of the SBP genes in subsequent studies.
Identifiants
pubmed: 37749345
doi: 10.1007/s11033-023-08799-2
pii: 10.1007/s11033-023-08799-2
doi:
Substances chimiques
Plant Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9107-9119Subventions
Organisme : Open Fund of Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants
ID : 2020E10013-K202104
Organisme : Research Development Fund of Zhejiang A&F University
ID : 2019FR028
Organisme : "Fourteenth Five-Year Plan" major scientific and technological project of new agricultural varieties breeding-new flower varieties breeding
ID : 2021C02071-5
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Zhou Q, Zhang S, Chen F, Liu B, Wu L, Li F, Zhang J, Bao M, Liu G (2018) Genome-wide identification and characterization of the SBP-box gene family in Petunia. BMC Genom 19(1):193. https://doi.org/10.1186/s12864-018-4537-91
doi: 10.1186/s12864-018-4537-91
Loconte H, Stevenson DW (1991) (1991) Cladistics of the magnoliidae. Cladistics 7(3):267–296
doi: 10.1111/j.1096-0031.1991.tb00038.x
pubmed: 34933465
Lv Q, Qiu J, Liu J, Li Z, Zhang W, Wang Q et al (2020) (2020) The Chimonanthus salicifolius genome provides insight into magnoliid evolution and flavonoid biosynthesis. Plant J 103(5):1910–1923. https://doi.org/10.1111/tpj.14874
doi: 10.1111/tpj.14874
pubmed: 32524692
Crepet WL, Nixon KC, Gandolfo MA (2005) An extinct calycanthoid taxon, Jerseyanthus calycanthoides, from the late cretaceous of New Jersey. Am J Bot 92(9):1475–1485. https://doi.org/10.3732/ajb.92.9.1475
doi: 10.3732/ajb.92.9.1475
pubmed: 21646165
Chen J, Hao Z, Guang X, Zhao C, Wang P, Xue L et al (2019) (2019) Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation. Nat Plants 5(1):18–25. https://doi.org/10.1038/s41477-018-0323-6
doi: 10.1038/s41477-018-0323-6
pubmed: 30559417
Renner SS (1999) (1999) Circumscription and phylogeny of the Laurales: evidence from molecular and morphological data. Am J Bot 86(9):1301–1315
doi: 10.2307/2656778
pubmed: 10487818
Jamal A, Wen J, Ma ZY, Ahmed I, Abdullah CL et al (2021) Comparative chloroplast genome analyses of the winter-blooming Eastern Asian endemic genus Chimonanthus (Calycanthaceae) with implications for its phylogeny and diversification. Front Genet 12:709996. https://doi.org/10.3389/fgene.2021.709996
doi: 10.3389/fgene.2021.709996
pubmed: 34917123
pmcid: 8670589
Worboys SJ, Jackes BR (2005) (2005) Pollination Processes in Idiospermum australiense (Calycanthaceae), an arborescent basal angiosperm of Australia’s tropical rain forests. Plant Syst Evol 251(2/4):107–117
doi: 10.1007/s00606-004-0226-z
Porwal MK (2002) Relative economics of weed management systems in winter sweet potato (Ipomoea batatus L.) in command area of Southern Rajasthan. Indian J Weed Sci 34:88–91
Hiromitsu T, Yohei M, Kyohei M, Atsushi I, Mariko K, Norio A (2003) (2003) Isolation, structure elucidation, and total synthesis of two new Chimonanthus alkaloids, chimonamidine and chimonanthidine. Tetrahedron 60(4):893–900
Li Y, Dong X (2008) (2008) Distinctions and applications wintersweet and Chinese plums in landscaping. For Ecol Sci 03:324–326
Ye Y, Ye L (2015) The Research summary and application prospect of Chimonanthus salicifolius S.Y.H. J Huangshan Univ 17(05):68–71
Shang J, Tian J, Cheng H, Yan Q, Li L, Jamal A et al (2020) The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome Biol 21(1):200. https://doi.org/10.1186/s13059-020-02088-y
doi: 10.1186/s13059-020-02088-y
pubmed: 32778152
pmcid: 7419205
Wang N, Chen H, Xiong L, Liu X, Li X, An Q et al (2018) Phytochemical profile of ethanolic extracts of Chimonanthus salicifolius S. Y. Hu. leaves and its antimicrobial and antibiotic-mediating activity. Ind Crops Prod 125:328–334. https://doi.org/10.1016/j.indcrop.2018.09.021
doi: 10.1016/j.indcrop.2018.09.021
Li S-L, Zou Z-R (2018) Research progress on flavonoids and coumarins from Chimonanthus plants and its pharmacological activities. Chin Tradit Herbal Drugs 24:3425–3430
Wang K, Li D, Wu B, Cao X (2016) New cytotoxic dimeric and trimeric coumarins from Chimonanthus salicifolius. Phytochem Lett 16:115–120. https://doi.org/10.1016/j.phytol.2016.03.009
doi: 10.1016/j.phytol.2016.03.009
Zhou X-L, Yu Y, Zhou C, Li S, Zhu Y-G, Xiao-Ling Y (2014) Anti-depression effect of Chimonanthus salicifolicus essential oil in chronic stressed rats. J Med Plants Res 8(10):430–435
doi: 10.5897/JMPR11.1709
Guo AY, Zhu QH, Gu X, Ge S, Yang J, Luo J (2008) Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family. Gene 418(1–2):1–8. https://doi.org/10.1016/j.gene.2008.03.016
doi: 10.1016/j.gene.2008.03.016
pubmed: 18495384
Chang JZ, Yan FX, Qiao LY, Zheng J, Zhang FY, Liu QS (2016) Genome-wide identification and expression analysis of SBP-box gene family in Sorghum bicolor L. Hereditas 38(6):569–580. https://doi.org/10.16288/j.yczz.16-008
doi: 10.16288/j.yczz.16-008
pubmed: 27655318
Valassakis C, Livanos P, Minopetrou M, Haralampidis K, Roussis A (2018) Promoter analysis and functional implications of the selenium binding protein (SBP) gene family in Arabidopsis thaliana. J Plant Physiol 2018:224–225
Mmadi M, Dossa K, Wang L, Zhou R, Wang Y, Cisse N et al (2017) Functional characterization of the versatile MYB Gene family uncovered their important roles in plant development and responses to drought and waterlogging in sesame. Genes 8(12):362
doi: 10.3390/genes8120362
pubmed: 29231869
pmcid: 5748680
Yong Z, Lingli G, Guanghua L, Lunwei J, Yingui Y (2018) Characterization and expression analysis of growth regulating factor (GRF) family genes in cucumber. Archives of Biol Sci 70(4):629–637
doi: 10.2298/ABS180414024Z
Song S, Zhou H, Sheng S, Cao M, Li Y, Pang X (2017) Genome-wide organization and expression profiling of the SBP-box gene family in Chinese Jujube (Ziziphus jujuba Mill.). Int J Mol Sci 8(8):1734
doi: 10.3390/ijms18081734
Zhou Q, Zhang S, Chen F, Liu B, Wu L, Li F et al (2018) (2018) Genome-wide identification and characterization of the SBP-box gene family in Petunia. BMC Genom 19(1):193. https://doi.org/10.1186/s12864-018-4537-9
doi: 10.1186/s12864-018-4537-9
Tripathi RK, Overbeek W, Singh J (2020) Global analysis of SBP gene family in Brachypodium distachyon reveals its association with spike development. Sci Rep. https://doi.org/10.1038/s41598-020-72005-7
doi: 10.1038/s41598-020-72005-7
pubmed: 33335123
pmcid: 7746765
Science; Reports on Science from McGill University Provide New Insights (Global analysis of SBP gene family in Brachypodium distachyon reveals its association with spike development). Science Letter. 2020.
Teng MR, Wang XY, Li H et al (2021) Identification and expression analysis of the SBP-box gene family related to abiotic stress in tea plant (Camellia sinensis (L.) O. Kuntze). Plant Mol Biol Rep 40(1):1418–2162
Valassakis C, Livanos P, Minopetrou M, Haralampidis K, Roussis A (2018) (2018) Promoter analysis and functional implications of the selenium binding protein (SBP) gene family in Arabidopsis thaliana. J Plant Physiol 224–225:19–29. https://doi.org/10.1016/j.jplph.2018.03.008
doi: 10.1016/j.jplph.2018.03.008
pubmed: 29574326
Cheng H, Hao M, Wang W, Mei D, Tong C, Wang H et al (2016) (2016) Genomic identification, characterization and differential expression analysis of SBP-box gene family in Brassica napus. BMC Plant Biol 16(1):196. https://doi.org/10.1186/s12870-016-0852-y
doi: 10.1186/s12870-016-0852-y
pubmed: 27608922
pmcid: 5017063
Salinas M, Xing S, Höhmann S, Berndtgen R, Huijser P (2012) (2012) Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato. Planta 235(6):1171–1184. https://doi.org/10.1007/s00425-011-1565-y
doi: 10.1007/s00425-011-1565-y
pubmed: 22160465
Cardon G, Höhmann S, Klein J, Nettesheim K, Saedler H, Huijser P (1999) (1999) Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237(1):91–104. https://doi.org/10.1016/s0378-1119(99)00308-x
doi: 10.1016/s0378-1119(99)00308-x
pubmed: 10524240
Li J, Hou H, Li X, Xiang J, Yin X, Gao H et al (2013) Genome-wide identification and analysis of the SBP-box family genes in apple (Malus × domestica Borkh.). Plant Physiol Biochem: PPB. 70:100–114. https://doi.org/10.1016/j.plaphy.2013.05.021
doi: 10.1016/j.plaphy.2013.05.021
pubmed: 23771035
Zhang X, Dou L, Pang C, Song M, Wei H, Fan S et al (2015) (2015) Genomic organization, differential expression, and functional analysis of the SPL gene family in Gossypium hirsutum. Mol Genet Genom 290(1):115–126. https://doi.org/10.1007/s00438-014-0901-x
doi: 10.1007/s00438-014-0901-x
Han YY, Ma YQ, Li DZ, Yao JW, Xu ZQ (2016) Characterization and phylogenetic analysis of fifteen NtabSPL genes in Nicotiana tabacum L. cv. Qinyan95. Develop Genes Evol 226(1):1–14. https://doi.org/10.1007/s00427-015-0522-3
doi: 10.1007/s00427-015-0522-3
Pan F, Wang Y, Liu H, Wu M, Chu W, Chen D et al (2017) 2017) Genome-wide identification and expression analysis of SBP-like transcription factor genes in Moso Bamboo (Phyllostachys edulis. BMC Genom 18(1):486. https://doi.org/10.1186/s12864-017-3882-4
doi: 10.1186/s12864-017-3882-4
Hou H, Li J, Gao M, Singer SD, Wang H, Mao L et al (2013) Genomic organization, phylogenetic comparison and differential expression of the SBP-box family genes in grape. PLoS ONE 8(3):e59358. https://doi.org/10.1371/journal.pone.0059358
doi: 10.1371/journal.pone.0059358
pubmed: 23527172
pmcid: 3601960
Li C, Lu S (2014) (2014) Molecular characterization of the SPL gene family in Populus trichocarpa. BMC Plant Biol 14:131. https://doi.org/10.1186/1471-2229-14-131
doi: 10.1186/1471-2229-14-131
pubmed: 24884654
pmcid: 4035897
Zhang HX, Jin JH, He YM, Lu BY, Li DW, Chai WG et al (2016) Genome-wide identification and analysis of the SBP-Box family genes under phytophthora capsici stress in pepper (Capsicum annuum L.). Front Plant Sci 7:504. https://doi.org/10.3389/fpls.2016.00504
doi: 10.3389/fpls.2016.00504
pubmed: 27148327
pmcid: 4832253
He F, Long R, Wei C, Zhang Y, Li M, Kang J et al (2022) Genome-wide identification, phylogeny and expression analysis of the SPL gene family and its important role in salt stress in Medicago sativa L. BMC Plant Biol 22(1):295. https://doi.org/10.1186/s12870-022-03678-7
doi: 10.1186/s12870-022-03678-7
pubmed: 35705909
pmcid: 9199161
Kavas M, Kızıldoğan AK, Abanoz B (2017) Comparative genome-wide phylogenetic and expression analysis of SBP genes from potato (Solanum tuberosum. Comput Biol Chem 67:131–140. https://doi.org/10.1016/j.compbiolchem.2017.01.001
doi: 10.1016/j.compbiolchem.2017.01.001
pubmed: 28081487
Lai D, Fan Y, Xue G, He A, Yang H, He C et al (2022) Genome-wide identification and characterization of the SPL gene family and its expression in the various developmental stages and stress conditions in foxtail millet (Setaria italic). BMC Genom 23(1):389. https://doi.org/10.1186/s12864-022-08633-2
doi: 10.1186/s12864-022-08633-2
Yang Z, Wang X, Gu S, Hu Z, Xu H, Xu C (2008) Comparative study of SBP-box gene family in Arabidopsis and rice. Gene 407(1–2):1–11. https://doi.org/10.1016/j.gene.2007.02.034
doi: 10.1016/j.gene.2007.02.034
pubmed: 17629421
Jung JH, Lee HJ, Ryu JY, Park CM (2016) SPL3/4/5 integrate developmental aging and photoperiodic signals into the FT-FD module in Arabidopsis flowering. Mol Plant 9(12):1647–1659. https://doi.org/10.1016/j.molp.2016.10.014
doi: 10.1016/j.molp.2016.10.014
pubmed: 27815142
Zheng C, Ye M, Sang M, Wu R (2019) A Regulatory Network for miR156-SPL Module in Arabidopsis thaliana. Int J Mol Sci 20(24):6166
doi: 10.3390/ijms20246166
pubmed: 31817723
pmcid: 6940959
Mingli X, Tieqiang H, Jianfei Z, Mee-Yeon P, Earley KW, Wu G et al (2016) Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana. PLoS Genet 12(8):e1006263
doi: 10.1371/journal.pgen.1006263
Gang W, Scott PR (2006) (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133(18):3539–3547
doi: 10.1242/dev.02521
Cardon GH, Hohmann S, Nettesheim K, Saedler H, Huijser P (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. The Plant J 12(2):367–377
doi: 10.1046/j.1365-313X.1997.12020367.x
pubmed: 9301089
Yamaguchi N, Winter CM, Wu MF, Kanno Y, Yamaguchi A, Seo M et al (2014) (2014) Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344(6184):638–641. https://doi.org/10.1126/science.1250498
doi: 10.1126/science.1250498
pubmed: 24812402
Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67(1–2):183–195. https://doi.org/10.1007/s11103-008-9310-z
doi: 10.1007/s11103-008-9310-z
pubmed: 18278578
pmcid: 2295252
Li L, Shi F, Wang Y, Yu X, Zhi J, Guan Y et al (2020) TaSPL13 regulates inflorescence architecture and development in transgenic wheat (Triticum aestivum L. ). Plant Sci 296:110516
doi: 10.1016/j.plantsci.2020.110516
pubmed: 32539997
Song J, Ma D, Yin J, Yang L, He Y, Zhu Z et al (2019) Genome-wide characterization and expression profiling of squamosa promoter binding protein-like (SBP) transcription factors in wheat (Triticum aestivum L.). Agronomy 9(9):527
doi: 10.3390/agronomy9090527
Singh RP, Jha PN (2016) Mitigation of salt stress in wheat plant (Triticum aestivum) by ACC deaminase bacterium Enterobacter sp. SBP-6 isolated from Sorghum bicolor. Acta Physiol Plant 38(5):110
doi: 10.1007/s11738-016-2123-9
Singh RP, Jha P, Jha PN (2015) The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum ) under salt stress. J Plant Physiol 184(2015):57–67
doi: 10.1016/j.jplph.2015.07.002
pubmed: 26217911
Li Y, Song Q, Zhang Y, Li Z, Guo J, Chen X et al (2020) Genome-wide identification, characterization, and expression patterns analysis of the SBP-box gene family in wheat (Triticum aestivum L.). Scientific Rep 10(1):17250. https://doi.org/10.1038/s41598-020-74417-x
doi: 10.1038/s41598-020-74417-x
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y et al (2020) (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202
doi: 10.1016/j.molp.2020.06.009
pubmed: 32585190
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054
doi: 10.1093/molbev/msw054
pubmed: 27004904
pmcid: 8210823
Zhang Y, Tang D, Lin X, Ding M, Tong Z (2018) (2018) Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering. BMC Plant Biol 18(1):176. https://doi.org/10.1186/s12870-018-1394-2
doi: 10.1186/s12870-018-1394-2
pubmed: 30176795
pmcid: 6122543
Bolger AM, Lohse M, Usadel B (2014) (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170
doi: 10.1093/bioinformatics/btu170
pubmed: 24695404
pmcid: 4103590
Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H et al (2005) (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17(8):2255–2270. https://doi.org/10.1105/tpc.105.033464
doi: 10.1105/tpc.105.033464
pubmed: 16006578
pmcid: 1182487
Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B et al (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18(17):4679–5688. https://doi.org/10.1093/emboj/18.17.4679
doi: 10.1093/emboj/18.17.4679
pubmed: 10469647
pmcid: 1171541
Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80(6):847–857. https://doi.org/10.1016/0092-8674(95)90288-0
doi: 10.1016/0092-8674(95)90288-0
pubmed: 7697715
Wang Q, Liu M, Quan S, Shi Q, Tian T, Zhang H et al (2023) FAR-RED ELONGATED HYPOCOTYL3 increases leaf longevity by delaying senescence in arabidopsis. Plant, Cell Environ 46(5):1582–1595. https://doi.org/10.1111/pce.14554
doi: 10.1111/pce.14554
pubmed: 36721872
Qin SW, Bao LH, He ZG, Li CL, La HG, Zhao LF (2022) Identification and regulatory network analysis of SPL family transcription factors in Populus euphratica Oliv heteromorphic leaves. Sci Rep 12(1):2856. https://doi.org/10.1038/s41598-022-06942-w
doi: 10.1038/s41598-022-06942-w
pubmed: 35190606
pmcid: 8861001
Preston JC, Hileman LC (2013) Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Front Plant Sci 4:80. https://doi.org/10.3389/fpls.2013.00080
doi: 10.3389/fpls.2013.00080
pubmed: 23577017
pmcid: 3617394
Li J, Gao X, Sang S, Liu C (2019) Genome-wide identification, phylogeny, and expression analysis of the SBP-box gene family in Euphorbiaceae. BMC Genomics 20:912. https://doi.org/10.1186/s12864-019-6319-4
doi: 10.1186/s12864-019-6319-4
pubmed: 31874634
pmcid: 6929338
Li X, Fan Z, Guo H, Ye N, Lyu T, Yang W et al (2018) (2018) Comparative genomics analysis reveals gene family expansion and changes of expression patterns associated with natural adaptations of flowering time and secondary metabolism in yellow Camellia. Funct Integr Genom 18(6):659–671. https://doi.org/10.1007/s10142-018-0617-9
doi: 10.1007/s10142-018-0617-9
Ma J, Nie G, Yang Z, Ma S, Fan J, Hu R et al (2022) Genome-wide identification, characterization, and expression profiling analysis of SPL gene family during the inflorescence development in Trifolium repens. Genes (Basel) 13(5):900. https://doi.org/10.3390/genes13050900
doi: 10.3390/genes13050900
pubmed: 35627286
Zhang Y, Schwarz S, Saedler H, Huijser P (2007) (2007) SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Mol Biol 63(3):429–439. https://doi.org/10.1007/s11103-006-9099-6
doi: 10.1007/s11103-006-9099-6
pubmed: 17093870
Unte US, Sorensen AM, Pesaresi P, Gandikota M, Leister D, Saedler H et al (2003) (2003) SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell 15(4):1009–1019. https://doi.org/10.1105/tpc.010678
doi: 10.1105/tpc.010678
pubmed: 12671094
pmcid: 152345
Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M (2009) (2009) Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant Cell Physiol 50(12):2133–2145. https://doi.org/10.1093/pcp/pcp148
doi: 10.1093/pcp/pcp148
pubmed: 19880401
Chao LM, Liu YQ, Chen DY, Xue XY, Mao YB, Chen XY (2017) (2017) Arabidopsis transcription factors SPL1 and SPL12 Confer Plant Thermotolerance at Reproductive Stage. Mol Plant 10(5):735–748. https://doi.org/10.1016/j.molp.2017.03.010
doi: 10.1016/j.molp.2017.03.010
pubmed: 28400323
Zhang SD, Ling LZ (2014) Genome-wide identification and evolutionary analysis of the SBP-box gene family in castor bean. PLoS ONE 9(1):e86688. https://doi.org/10.1371/journal.pone.0086688
doi: 10.1371/journal.pone.0086688
pubmed: 24466202
pmcid: 3899293
Yao T, Park BS, Mao HZ, Seo JS, Ohama N, Li Y et al (2019) Regulation of flowering time by SPL10/MED25 module in Arabidopsis. New Phytol 224(1):493–504. https://doi.org/10.1111/nph.15954
doi: 10.1111/nph.15954
pubmed: 31125430
Gao R, Wang Y, Gruber MY, Hannoufa A (2017) (2017) miR156/SPL10 modulates lateral root development, branching and leaf morphology in Arabidopsis by silencing AGAMOUS-LIKE 79. Front Plant Sci 8:2226. https://doi.org/10.3389/fpls.2017.02226
doi: 10.3389/fpls.2017.02226
pubmed: 29354153
Cardon GH, Höhmann S, Nettesheim K, Saedler H, Huijser P (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 12(2):367–377. https://doi.org/10.1046/j.1365-313x.1997.12020367.x
doi: 10.1046/j.1365-313x.1997.12020367.x
pubmed: 9301089