Electrospun Nanofibrous Conduit Filled with a Collagen-Based Matrix (ColM) for Nerve Regeneration.
Schwann cells
biodegradability
electrospinning process
nanofibrous
porosity
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
20 Nov 2023
20 Nov 2023
Historique:
received:
08
10
2023
revised:
10
11
2023
accepted:
11
11
2023
medline:
27
11
2023
pubmed:
25
11
2023
entrez:
25
11
2023
Statut:
epublish
Résumé
Traumatic nerve defects result in dysfunctions of sensory and motor nerves and are usually accompanied by pain. Nerve guidance conduits (NGCs) are widely applied to bridge large-gap nerve defects. However, few NGCs can truly replace autologous nerve grafts to achieve comprehensive neural regeneration and function recovery. Herein, a three-dimensional (3D) sponge-filled nanofibrous NGC (sf@NGC) resembling the structure of native peripheral nerves was developed. The conduit was fabricated by electrospinning a poly(L-lactide-co-glycolide) (PLGA) membrane, whereas the intraluminal filler was obtained by freeze-drying a collagen-based matrix (ColM) resembling the extracellular matrix. The effects of the electrospinning process and of the composition of ColM on the physicochemical performance of sf@NGC were investigated in detail. Furthermore, the biocompatibility of the PLGA sheath and ColM were evaluated. The continuous and homogeneous PLGA nanofiber membrane had high porosity and tensile strength. ColM was shown to exhibit an ECM-like architecture characterized by a multistage pore structure and a high porosity level of over 70%. The PLGA sheath and ColM were shown to possess stagewise degradability and good biocompatibility. In conclusion, sf@NGC may have a favorable potential for the treatment of nerve reconstruction.
Identifiants
pubmed: 38005397
pii: molecules28227675
doi: 10.3390/molecules28227675
pmc: PMC10675555
pii:
doi:
Substances chimiques
Collagen
9007-34-5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Carbohydr Polym. 2017 May 1;163:34-42
pubmed: 28267516
Chem Rev. 2019 Apr 24;119(8):5298-5415
pubmed: 30916938
Biomaterials. 2019 Jul;207:49-60
pubmed: 30954885
Biomaterials. 2015 May;49:77-89
pubmed: 25725557
Acta Biomater. 2018 Mar 15;69:146-155
pubmed: 29330037
Bioact Mater. 2021 Oct 05;11:57-76
pubmed: 34938913
Adv Healthc Mater. 2016 Nov;5(21):2732-2744
pubmed: 27600578
Biomaterials. 2016 Jan;75:112-122
pubmed: 26496383
Prog Neurobiol. 2010 Nov;92(3):245-76
pubmed: 20950667
Mater Today Bio. 2021 Nov 16;12:100158
pubmed: 34841240
Acta Biomater. 2018 Jan 15;66:166-176
pubmed: 29128540
Acta Biomater. 2018 Mar 1;68:223-236
pubmed: 29274478
Injury. 2012 May;43(5):553-72
pubmed: 21269624
Acta Biomater. 2020 Nov;117:180-191
pubmed: 33007489
Molecules. 2022 Apr 06;27(7):
pubmed: 35408765
Adv Healthc Mater. 2021 Jul;10(14):e2100427
pubmed: 34038626
Angew Chem Int Ed Engl. 2005 May 30;44(22):3358-93
pubmed: 15861454
Bioact Mater. 2021 Feb 22;6(9):2881-2893
pubmed: 33718669
Acta Biomater. 2019 May;90:49-59
pubmed: 30930306
Prog Neurobiol. 2018 Dec;171:125-150
pubmed: 30077776
J Surg Res. 2003 Oct;114(2):133-9
pubmed: 14559438
Acta Biomater. 2016 Oct 1;43:112-121
pubmed: 27424084
Int J Biol Macromol. 2020 Oct 15;161:550-560
pubmed: 32534089
Nanomaterials (Basel). 2022 Mar 14;12(6):
pubmed: 35335774
Nat Commun. 2020 Sep 9;11(1):4504
pubmed: 32908131
Adv Drug Deliv Rev. 2015 Mar;82-83:160-7
pubmed: 25446133
Prog Neurobiol. 2011 Feb;93(2):204-30
pubmed: 21130136
Acta Biomater. 2018 Jun;73:217-227
pubmed: 29454157
Adv Sci (Weinh). 2022 Apr;9(12):e2103875
pubmed: 35182046
Adv Funct Mater. 2018 Mar 21;28(12):
pubmed: 37829558
Carbohydr Polym. 2017 Jun 1;165:30-38
pubmed: 28363553
Mater Today Bio. 2023 Jun 23;21:100710
pubmed: 37545561
J Biomed Mater Res A. 2018 May;106(5):1288-1298
pubmed: 29316233
Adv Healthc Mater. 2018 Apr;7(8):e1701164
pubmed: 29349931
Exp Neurol. 2019 Sep;319:112761
pubmed: 29772248