Metagenome-assembled genomes reveal greatly expanded taxonomic and functional diversification of the abundant marine Roseobacter RCA cluster.
Genome content
Genome streamlining
Horizontal gene transfer
Metagenome-assembled genomes
Phylogenomics
Proteorhodopsin
RCA cluster
Rhodobacteraceae
Roseobacteraceae
SeqCode
Journal
Microbiome
ISSN: 2049-2618
Titre abrégé: Microbiome
Pays: England
ID NLM: 101615147
Informations de publication
Date de publication:
25 Nov 2023
25 Nov 2023
Historique:
received:
12
06
2023
accepted:
07
08
2023
medline:
27
11
2023
pubmed:
26
11
2023
entrez:
25
11
2023
Statut:
epublish
Résumé
The RCA (Roseobacter clade affiliated) cluster belongs to the family Roseobacteracea and represents a major Roseobacter lineage in temperate to polar oceans. Despite its prevalence and abundance, only a few genomes and one described species, Planktomarina temperata, exist. To gain more insights into our limited understanding of this cluster and its taxonomic and functional diversity and biogeography, we screened metagenomic datasets from the global oceans and reconstructed metagenome-assembled genomes (MAG) affiliated to this cluster. The total of 82 MAGs, plus five genomes of isolates, reveal an unexpected diversity and novel insights into the genomic features, the functional diversity, and greatly refined biogeographic patterns of the RCA cluster. This cluster is subdivided into three genera: Planktomarina, Pseudoplanktomarina, and the most deeply branching Candidatus Paraplanktomarina. Six of the eight Planktomarina species have larger genome sizes (2.44-3.12 Mbp) and higher G + C contents (46.36-53.70%) than the four Pseudoplanktomarina species (2.26-2.72 Mbp, 42.22-43.72 G + C%). Cand. Paraplanktomarina is represented only by one species with a genome size of 2.40 Mbp and a G + C content of 45.85%. Three novel species of the genera Planktomarina and Pseudoplanktomarina are validly described according to the SeqCode nomenclature for prokaryotic genomes. Aerobic anoxygenic photosynthesis (AAP) is encoded in three Planktomarina species. Unexpectedly, proteorhodopsin (PR) is encoded in the other Planktomarina and all Pseudoplanktomarina species, suggesting that this light-driven proton pump is the most important mode of acquiring complementary energy of the RCA cluster. The Pseudoplanktomarina species exhibit differences in functional traits compared to Planktomarina species and adaptations to more resource-limited conditions. An assessment of the global biogeography of the different species greatly expands the range of occurrence and shows that the different species exhibit distinct biogeographic patterns. They partially reflect the genomic features of the species. Our detailed MAG-based analyses shed new light on the diversification, environmental adaptation, and global biogeography of a major lineage of pelagic bacteria. The taxonomic delineation and validation by the SeqCode nomenclature of prominent genera and species of the RCA cluster may be a promising way for a refined taxonomic identification of major prokaryotic lineages and sublineages in marine and other prokaryotic communities assessed by metagenomics approaches. Video Abstract.
Sections du résumé
BACKGROUND
BACKGROUND
The RCA (Roseobacter clade affiliated) cluster belongs to the family Roseobacteracea and represents a major Roseobacter lineage in temperate to polar oceans. Despite its prevalence and abundance, only a few genomes and one described species, Planktomarina temperata, exist. To gain more insights into our limited understanding of this cluster and its taxonomic and functional diversity and biogeography, we screened metagenomic datasets from the global oceans and reconstructed metagenome-assembled genomes (MAG) affiliated to this cluster.
RESULTS
RESULTS
The total of 82 MAGs, plus five genomes of isolates, reveal an unexpected diversity and novel insights into the genomic features, the functional diversity, and greatly refined biogeographic patterns of the RCA cluster. This cluster is subdivided into three genera: Planktomarina, Pseudoplanktomarina, and the most deeply branching Candidatus Paraplanktomarina. Six of the eight Planktomarina species have larger genome sizes (2.44-3.12 Mbp) and higher G + C contents (46.36-53.70%) than the four Pseudoplanktomarina species (2.26-2.72 Mbp, 42.22-43.72 G + C%). Cand. Paraplanktomarina is represented only by one species with a genome size of 2.40 Mbp and a G + C content of 45.85%. Three novel species of the genera Planktomarina and Pseudoplanktomarina are validly described according to the SeqCode nomenclature for prokaryotic genomes. Aerobic anoxygenic photosynthesis (AAP) is encoded in three Planktomarina species. Unexpectedly, proteorhodopsin (PR) is encoded in the other Planktomarina and all Pseudoplanktomarina species, suggesting that this light-driven proton pump is the most important mode of acquiring complementary energy of the RCA cluster. The Pseudoplanktomarina species exhibit differences in functional traits compared to Planktomarina species and adaptations to more resource-limited conditions. An assessment of the global biogeography of the different species greatly expands the range of occurrence and shows that the different species exhibit distinct biogeographic patterns. They partially reflect the genomic features of the species.
CONCLUSIONS
CONCLUSIONS
Our detailed MAG-based analyses shed new light on the diversification, environmental adaptation, and global biogeography of a major lineage of pelagic bacteria. The taxonomic delineation and validation by the SeqCode nomenclature of prominent genera and species of the RCA cluster may be a promising way for a refined taxonomic identification of major prokaryotic lineages and sublineages in marine and other prokaryotic communities assessed by metagenomics approaches. Video Abstract.
Identifiants
pubmed: 38007474
doi: 10.1186/s40168-023-01644-5
pii: 10.1186/s40168-023-01644-5
pmc: PMC10675870
doi:
Types de publication
Video-Audio Media
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
265Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : TRR51
Organisme : Deutsche Forschungsgemeinschaft
ID : TRR51
Organisme : Deutsche Forschungsgemeinschaft
ID : TRR51
Organisme : Deutsche Forschungsgemeinschaft
ID : TRR51
Organisme : Deutsche Forschungsgemeinschaft
ID : TRR51
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : 205321_184955
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : 205321_184955
Organisme : National Center of Competence in Research Quantum Science and Technology
ID : 51NF40_180575
Informations de copyright
© 2023. The Author(s).
Références
Nat Microbiol. 2022 Oct;7(10):1702-1708
pubmed: 36123442
Environ Microbiol. 2008 Mar;10(3):738-56
pubmed: 18237307
ISME J. 2018 Apr;12(4):1047-1060
pubmed: 29476140
Arch Microbiol. 2010 Feb;192(2):115-26
pubmed: 20039020
Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2567-72
pubmed: 15701695
Bioinformatics. 2012 Dec 1;28(23):3150-2
pubmed: 23060610
Front Microbiol. 2011 Aug 12;2:172
pubmed: 21886640
Science. 2005 Aug 19;309(5738):1242-5
pubmed: 16109880
Environ Microbiol. 2017 Apr;19(4):1625-1638
pubmed: 28142225
Front Microbiol. 2015 Aug 11;6:805
pubmed: 26322028
ISME J. 2013 Jan;7(1):184-98
pubmed: 22895163
Nucleic Acids Res. 2021 Jan 8;49(D1):D751-D763
pubmed: 33119741
PeerJ. 2019 Jul 26;7:e7359
pubmed: 31388474
ISME J. 2011 Jan;5(1):8-19
pubmed: 20596072
Arch Microbiol. 2006 Jun;185(5):402-6
pubmed: 16541231
Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17633-8
pubmed: 23045668
ISME J. 2018 Mar;12(3):742-755
pubmed: 29222442
Cell. 2019 Nov 14;179(5):1068-1083.e21
pubmed: 31730850
Environ Int. 2021 Dec;157:106829
pubmed: 34425483
ISME J. 2011 Apr;5(4):685-91
pubmed: 21068776
Nat Commun. 2018 Nov 30;9(1):5114
pubmed: 30504855
Nat Methods. 2017 Nov;14(11):1063-1071
pubmed: 28967888
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Nat Commun. 2019 Mar 4;10(1):1014
pubmed: 30833550
Nat Biotechnol. 2018 Nov;36(10):996-1004
pubmed: 30148503
Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205
pubmed: 24214961
ISME J. 2012 Jan;6(1):71-80
pubmed: 21697958
Appl Environ Microbiol. 2006 Mar;72(3):1966-73
pubmed: 16517644
Nat Rev Microbiol. 2007 Feb;5(2):107-18
pubmed: 17224920
FEMS Microbiol Ecol. 2014 Feb;87(2):378-89
pubmed: 24111503
Nat Microbiol. 2017 Oct;2(10):1367-1373
pubmed: 28808230
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
FEMS Microbiol Ecol. 2019 May 1;95(5):
pubmed: 31055603
Microb Ecol. 2019 Aug;78(2):299-312
pubmed: 30666368
Nat Rev Microbiol. 2019 Nov;17(11):665-678
pubmed: 31485034
ISME J. 2017 Dec;11(12):2864-2868
pubmed: 28742071
Sci Data. 2018 Sep 04;5:180154
pubmed: 30179231
Nature. 2004 Jan 29;427(6973):445-8
pubmed: 14749832
ISME J. 2014 Aug;8(8):1553-65
pubmed: 24739623
ISME J. 2012 Dec;6(12):2178-87
pubmed: 22739490
Nature. 2013 Jul 25;499(7459):431-7
pubmed: 23851394
Nat Microbiol. 2017 Nov;2(11):1533-1542
pubmed: 28894102
Front Microbiol. 2016 Jan 08;6:1524
pubmed: 26779174
ISME J. 2012 Jun;6(6):1186-99
pubmed: 22170421
Ann Rev Mar Sci. 2021 Jan;13:81-108
pubmed: 32726567
ISME J. 2010 Jun;4(6):784-98
pubmed: 20072162
Front Microbiol. 2017 Sep 13;8:1771
pubmed: 28959250
Environ Microbiol. 2018 Aug;20(8):3100-3108
pubmed: 30109757
Microbiol Mol Biol Rev. 2016 Sep 14;80(4):929-54
pubmed: 27630250
Nature. 2022 Jul;607(7917):111-118
pubmed: 35732736
Nucleic Acids Res. 2021 Jan 8;49(D1):D723-D733
pubmed: 33152092
Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259
pubmed: 30931475
Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361
pubmed: 27899662
Nat Commun. 2022 Jan 24;13(1):456
pubmed: 35075131
ISME J. 2016 Jan;10(1):39-50
pubmed: 26196334
Appl Environ Microbiol. 2015 Apr;81(7):2408-22
pubmed: 25616803
Mol Syst Biol. 2012 Jul 17;8:595
pubmed: 22806143
Trends Genet. 2001 Oct;17(10):589-96
pubmed: 11585665
Genome Res. 2017 May;27(5):824-834
pubmed: 28298430
Appl Environ Microbiol. 2016 Jan 29;82(7):2100-2111
pubmed: 26826224
ISME J. 2015 Feb;9(2):371-84
pubmed: 25083934
Front Microbiol. 2021 Jun 25;12:683109
pubmed: 34248901
Nat Rev Microbiol. 2008 Jun;6(6):431-40
pubmed: 18461076
Appl Environ Microbiol. 1999 Aug;65(8):3721-6
pubmed: 10427073
Mol Biol Evol. 2020 May 1;37(5):1530-1534
pubmed: 32011700
J Comput Biol. 2012 May;19(5):455-77
pubmed: 22506599
Environ Microbiol. 2009 Aug;11(8):2164-78
pubmed: 19689707
Int J Syst Evol Microbiol. 2007 Jan;57(Pt 1):81-91
pubmed: 17220447
Genome Res. 2015 Jul;25(7):1043-55
pubmed: 25977477
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
ISME J. 2020 Jan;14(1):79-90
pubmed: 31501503
mSystems. 2021 Oct 26;6(5):e0094421
pubmed: 34609172
PLoS Genet. 2011 Jan 27;7(1):e1001284
pubmed: 21298028
Environ Microbiol Rep. 2013 Apr;5(2):188-99
pubmed: 23584962
Appl Environ Microbiol. 2008 May;74(9):2595-603
pubmed: 18326670
Environ Microbiol. 2020 May;22(5):1748-1763
pubmed: 31840364
Genome Res. 2011 Apr;21(4):599-609
pubmed: 21270172
mSystems. 2019 Dec 17;4(6):
pubmed: 31848303
Microbiol Mol Biol Rev. 2014 Dec;78(4):573-87
pubmed: 25428935
Sci Data. 2018 Sep 04;5:180176
pubmed: 30179232
Nat Microbiol. 2016 May 16;1(7):16063
pubmed: 27572966
Nat Methods. 2022 Apr;19(4):429-440
pubmed: 35396482
ISME J. 2018 May;12(5):1180-1187
pubmed: 29330536
Science. 2012 May 4;336(6081):608-11
pubmed: 22556258
Science. 2015 May 22;348(6237):1261359
pubmed: 25999513
Environ Microbiol. 2012 Jan;14(1):41-51
pubmed: 21854517
Antonie Van Leeuwenhoek. 1997 Nov;72(4):299-315
pubmed: 9442271
Genomics. 2010 Jun;95(6):315-27
pubmed: 20211242
Bioinformatics. 2019 Nov 15;:
pubmed: 31730192
Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45
pubmed: 26553804
mBio. 2013 Jul 09;4(4):
pubmed: 23839216
Biochim Biophys Acta Bioenerg. 2020 Nov 1;1861(11):148279
pubmed: 32735861
Environ Microbiol Rep. 2014 Jun;6(3):278-86
pubmed: 24983532
Int J Syst Evol Microbiol. 2013 Nov;63(Pt 11):4207-4217
pubmed: 23793856
Ann Rev Mar Sci. 2014;6:279-337
pubmed: 24405427
Stand Genomic Sci. 2016 Feb 29;11:21
pubmed: 26929790
PeerJ. 2015 Oct 08;3:e1319
pubmed: 26500826
Microbiome. 2020 Apr 2;8(1):47
pubmed: 32241287
ISME J. 2020 Aug;14(8):2105-2115
pubmed: 32405026
Bioinformatics. 2014 Jul 15;30(14):2068-9
pubmed: 24642063
Syst Appl Microbiol. 2013 Feb;36(1):39-48
pubmed: 23265193
Bioinformatics. 2020 Apr 1;36(7):2251-2252
pubmed: 31742321