In vitro selection of DNA aptamers against staphylococcal enterotoxin A.
Aptamers
Lateral flow assay
SEA
SELEX
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
18 May 2024
18 May 2024
Historique:
received:
29
12
2022
accepted:
30
04
2024
medline:
19
5
2024
pubmed:
19
5
2024
entrez:
18
5
2024
Statut:
epublish
Résumé
Staphylococcal enterotoxin A (SEA) is the most frequently reported in staphylococcal food poisoning (SFP) outbreaks. Aptamers are single-stranded nucleic acids that are seen as promising alternatives to antibodies in several areas, including diagnostics. In this work, systematic evolution of ligands by exponential enrichment (SELEX) was used to select DNA aptamers against SEA. The SELEX protocol employed magnetic beads as an immobilization matrix for the target molecule and real-time quantitative PCR (qPCR) for monitoring and optimizing sequence enrichment. After 10 selection cycles, the ssDNA pool with the highest affinity was sequenced by next generation sequencing (NGS). Approximately 3 million aptamer candidates were identified, and the most representative cluster sequences were selected for further characterization. The aptamer with the highest affinity showed an experimental dissociation constant (K
Identifiants
pubmed: 38762575
doi: 10.1038/s41598-024-61094-3
pii: 10.1038/s41598-024-61094-3
doi:
Substances chimiques
enterotoxin A, Staphylococcal
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11345Informations de copyright
© 2024. The Author(s).
Références
World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases (2015).
World Health Organization. Estimating the Burden of Foodborne Diseases: A Practical Handbook for Countries (2021).
EFSA & ECDC. The European Union One Health 2021 Zoonoses Report. EFSA J. 20 (2022).
Scallan, E. et al. Foodborne illness acquired in the united states—Major pathogens. Emerg. Infect. Dis. 17, 7 (2011).
doi: 10.3201/eid1701.P11101
pubmed: 21192848
pmcid: 3375761
Jaffee, S., Henson, S., Unnevehr, L., Grace, D. & Cassou, E. The Safe Food Imperative: Accelerating Progress in Low- and Middle-Income Countries. The Safe Food Imperative: Accelerating Progress in Low- and Middle-Income Countries (The World Bank, 2018). https://doi.org/10.1596/978-1-4648-1345-0 .
Fisher, E. L., Otto, M. & Cheung, G. Y. C. Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Front. Microbiol. 9, 436. https://doi.org/10.3389/fmicb.2018.00436 (2018).
doi: 10.3389/fmicb.2018.00436
pubmed: 29662470
pmcid: 5890119
Pinchuk, I. V., Beswick, E. J. & Reyes, V. E. Staphylococcal enterotoxins. Toxins 2, 2177–2197. https://doi.org/10.3390/toxins2082177 (2010).
doi: 10.3390/toxins2082177
pubmed: 22069679
pmcid: 3153290
Kadariya, J., Smith, T. C. & Thapaliya, D. Staphylococcus aureus and staphylococcal food-borne disease: An ongoing challenge in public health. BioMed Res. Int. 2014, 827965. https://doi.org/10.1155/2014/827965 (2014).
doi: 10.1155/2014/827965
pubmed: 24804250
pmcid: 3988705
Bennett, R. W. Staphylococcal enterotoxin and its rapid identification in foods by enzyme-linked immunosorbent assay-based methodology. J. Food Prot. 68, 1264–1270 (2005).
doi: 10.4315/0362-028X-68.6.1264
pubmed: 15954720
ISO. ISO 19020:2017—Microbiology of the food chain—Horizontal method for the immunoenzymatic detection of enterotoxins in foodstuffs (2017).
Gray, A. et al. Animal-free alternatives and the antibody iceberg. Nat. Biotechnol. 38(11), 1234–1239 (2020).
doi: 10.1038/s41587-020-0687-9
pubmed: 33046876
Hernandez, L., Machado, I., Schafer, T. & Hernandez, F. Aptamers overview: Selection, features and applications. Curr. Top. Med. Chem. 15, 1066–1081 (2015).
doi: 10.2174/1568026615666150413153717
pubmed: 25866270
Hong, K. L. & Sooter, L. J. Single-stranded DNA aptamers against pathogens and toxins: Identification and biosensing applications. Biomed. Res. Int. 2015, 1–31 (2015).
Wang, L. et al. An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection. Biosens. Bioelectron. 26, 3059–3062 (2011).
doi: 10.1016/j.bios.2010.11.040
pubmed: 21167704
Huang, Y. et al. Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1. Food Chem. 166, 623–629 (2015).
doi: 10.1016/j.foodchem.2014.06.039
pubmed: 25053102
Cruz-Aguado, J. A. & Penner, G. Determination of ochratoxin A with a DNA aptamer. J. Agric. Food Chem. 56, 10456–10461 (2008).
doi: 10.1021/jf801957h
pubmed: 18983163
Liu, A., Zhang, Y., Chen, W., Wang, X. & Chen, F. Gold nanoparticle-based colorimetric detection of staphylococcal enterotoxin B using ssDNA aptamers. Eur. Food Res. Technol. 237, 323–329 (2013).
doi: 10.1007/s00217-013-1995-9
DeGrasse, J. A. A single-stranded DNA aptamer that selectively binds to staphylococcus aureus enterotoxin B. PLoS One 7, e33410 (2012).
doi: 10.1371/journal.pone.0033410
pubmed: 22438927
pmcid: 3306407
Zhou, W., Jimmy Huang, P.-J., Ding, J. & Liu, J. Aptamer-based biosensors for biomedical diagnostics. Analyst 139, 2627 (2014).
doi: 10.1039/c4an00132j
pubmed: 24733714
Hedayati Ch, M. et al. Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr-activated sepharose-4B affinity chromatography. J. Mol. Recognit. 29, 436–445 (2016).
doi: 10.1002/jmr.2542
pubmed: 27091327
Wang, K. et al. Inhibition of the superantigenic activities of Staphylococcal enterotoxin A by an aptamer antagonist. Toxicon 119, 21–27 (2016).
doi: 10.1016/j.toxicon.2016.05.006
pubmed: 27179422
Xiong, X., Shi, X., Liu, Y., Lu, L. & You, J. An aptamer-based electrochemical biosensor for simple and sensitive detection of staphylococcal enterotoxin B in milk. Anal. Methods 10, 365–370 (2018).
doi: 10.1039/C7AY02452E
Temur, E. et al. Attomole sensitivity of staphylococcal enterotoxin b detection using an aptamer-modified surface-enhanced Raman scattering probe. Anal. Chem. 84, 10600–10606 (2012).
doi: 10.1021/ac301924f
pubmed: 23140575
Stoltenburg, R., Reinemann, C. & Strehlitz, B. SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 24, 381–403. https://doi.org/10.1016/j.bioeng.2007.06.001 (2007).
doi: 10.1016/j.bioeng.2007.06.001
pubmed: 17627883
Hao, L. & Gu, H. Introduction of aptamer, SELEX, and different SELEX variants. Aptamers Med. Appl. https://doi.org/10.1007/978-981-33-4838-7_1 (2021).
doi: 10.1007/978-981-33-4838-7_1
Kolm, C. et al. DNA aptamers against bacterial cells can be efficiently selected by a SELEX process using state-of-the art qPCR and ultra-deep sequencing. Sci. Rep. 10, 1–16 (2020).
doi: 10.1038/s41598-020-77221-9
Hoinka, J., Backofen, R. & Przytycka, T. M. AptaSUITE: A full-featured bioinformatics framework for the comprehensive analysis of aptamers from HT-SELEX experiments. Mol. Ther. Nucleic Acids 11, 515 (2018).
doi: 10.1016/j.omtn.2018.04.006
pubmed: 29858086
pmcid: 5992478
Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).
doi: 10.1093/nar/gkg595
pubmed: 12824337
pmcid: 169194
Keefe, A. D., Pai, S. & Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550. https://doi.org/10.1038/nrd3141 (2010).
doi: 10.1038/nrd3141
pubmed: 20592747
pmcid: 7097324
Zhu, G. & Chen, X. Aptamer-based targeted therapy. Adv. Drug Deliv. Rev. 134, 65–78. https://doi.org/10.1016/j.addr.2018.08.005 (2018).
doi: 10.1016/j.addr.2018.08.005
pubmed: 30125604
pmcid: 6239901
Thiviyanathan, V. & Gorenstein, D. G. Aptamers and the next generation of diagnostic reagents. Proteom. Clin. Appl. 6, 563 (2012).
doi: 10.1002/prca.201200042
Blind, M. & Blank, M. Aptamer selection technology and recent advances. Mol. Ther. Nucleic Acids 4, e223. https://doi.org/10.1038/mtna.2014.74 (2015).
doi: 10.1038/mtna.2014.74
pubmed: 28110747
pmcid: 4345306
Zhang, Y., Lai, B. S. & Juhas, M. Recent advances in aptamer discovery and applications. Molecules https://doi.org/10.3390/molecules24050941 (2019).
doi: 10.3390/molecules24050941
pubmed: 31906165
pmcid: 6983255
McKeague, M., Giamberardino, A. & C., M. Advances in Aptamer-Based Biosensors for Food Safety. In Environmental Biosensors (InTech, 2011). https://doi.org/10.5772/22350
Teng, J. et al. Aptamer-based technologies in foodborne pathogen detection. Front. Microbiol. 7, 1426 (2016).
doi: 10.3389/fmicb.2016.01426
pubmed: 27672383
pmcid: 5018482
Yadav, G. S., Parashar, A. & Aggarwal, N. K. Aptamer: A next generation tool for application in agricultural industry for food safety. Aptamers Biotechnol. Appl. Next Gener. Tool https://doi.org/10.1007/978-981-13-8836-1_12/COVER (2019).
doi: 10.1007/978-981-13-8836-1_12/COVER
Ng, E. W. M. & Adamis, A. P. Anti-VEGF aptamer (pegaptanib) therapy for ocular vascular diseases. Ann. N. Y. Acad. Sci. 1082, 151–171 (2006).
doi: 10.1196/annals.1348.062
pubmed: 17145936
Ng, E. W. M. et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 5, 123–132 (2006).
doi: 10.1038/nrd1955
pubmed: 16518379
Huang, Y. et al. Selection, identification and application of a DNA aptamer against Staphylococcus aureus enterotoxin A. Anal. Methods 6, 690–697 (2014).
doi: 10.1039/C3AY41576G
Stoltenburg, R., Reinemann, C. & Strehlitz, B. FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal. Bioanal. Chem. 383, 83–91 (2005).
doi: 10.1007/s00216-005-3388-9
pubmed: 16052344
Sedighian, H. et al. Staggered target SELEX, a novel approach to isolate non-cross-reactive aptamer for detection of SEA by apta-qPCR. J. Biotechnol. 286, 45–55 (2018).
doi: 10.1016/j.jbiotec.2018.09.006
pubmed: 30236483
Kohlberger, M. & Gadermaier, G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol. Appl. Biochem. 69, 1771 (2022).
doi: 10.1002/bab.2244
pubmed: 34427974
Argudín, M. Á., Mendoza, M. C. & Rodicio, M. R. Food poisoning and staphylococcus aureus enterotoxins. Toxins 2, 1751–1773. https://doi.org/10.3390/toxins2071751 (2010).
doi: 10.3390/toxins2071751
pubmed: 22069659
pmcid: 3153270
Stoltenburg, R. & Strehlitz, B. Refining the results of a classical SELEX experiment by expanding the sequence data set of an aptamer pool selected for protein A. Int. J. Mol. Sci. 19, 642 (2018).
doi: 10.3390/ijms19020642
pubmed: 29495282
pmcid: 5855864
Bittker, J. A., Le, Bv. & Liu, D. R. Nucleic acid evolution and minimization by nonhomologous random recombination. Nat. Biotechnol. 20, 1024 (2002).
doi: 10.1038/nbt736
pubmed: 12219078
pmcid: 2819268
Hoinka, J., Berezhnoy, A., Sauna, Z. E., Gilboa, E. & Przytycka, T. M. AptaCluster—A method to cluster HT-SELEX aptamer pools and lessons from its application. Res. Comput. Mol. Biol. 8394, 115 (2014).
doi: 10.1007/978-3-319-05269-4_9
pubmed: 25558474
pmcid: 4281958
Dao, P. et al. AptaTRACE elucidates RNA sequence-structure motifs from selection trends in HT-SELEX experiments. Cell Syst. 3, 62–70 (2016).
doi: 10.1016/j.cels.2016.07.003
pubmed: 27467247
pmcid: 5042215
Sakamoto, T., Ennifar, E. & Nakamura, Y. Thermodynamic study of aptamers binding to their target proteins. Biochimie 145, 91–97 (2018).
doi: 10.1016/j.biochi.2017.10.010
pubmed: 29054802
Chen, W. et al. Expression and characterization of single-chain variable fragment antibody against staphylococcal enterotoxin A in Escherichia coli. Can. J. Microbiol. 60, 737–743 (2014).
doi: 10.1139/cjm-2014-0468
pubmed: 25322256
Lapeyre, C., Kaveri, Sv., Janin, F. & Strosberg, A. D. Production and characterization of monoclonal antibodies to staphylococcal enterotoxins: Use in immunodetection and immunopurification. Mol. Immunol. 24, 1243–1254 (1987).
doi: 10.1016/0161-5890(87)90118-0
pubmed: 3323890
Tarisse, C. F. et al. Highly sensitive and specific detection of staphylococcal enterotoxins SEA, SEG, SEH, and SEI by immunoassay. Toxins (Basel) 13 (2021).
Elskens, J. P., Elskens, J. M. & Madder, A. Chemical modification of aptamers for increased binding affinity in diagnostic applications: Current status and future prospects. Int. J. Mol. Sci. 21, 1–31. https://doi.org/10.3390/ijms21124522 (2020).
doi: 10.3390/ijms21124522
Cai, S. et al. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst 143, 5317–5338. https://doi.org/10.1039/c8an01467a (2018).
doi: 10.1039/c8an01467a
pubmed: 30357118
Wang, G. et al. Selection and characterization of DNA aptamer against glucagon receptor by cell-SELEX. Sci. Rep. 7(1) 7, 1–10 (2017).
Oliveira, R. et al. Improving aptamer performance with nucleic acid mimics: De novo and post-SELEX approaches. Trends Biotechnol. 40, 549–563 (2022).
doi: 10.1016/j.tibtech.2021.09.011
pubmed: 34756455
Zhang, Z., Oni, O. & Liu, J. New insights into a classic aptamer: Binding sites, cooperativity and more sensitive adenosine detection. Nucleic Acids Res. 45, 7593–7601 (2017).
doi: 10.1093/nar/gkx517
pubmed: 28591844
pmcid: 5737652
Ziółkowski, R., Jarczewska, M., Górski, Ł & Malinowska, E. From small molecules toward whole cells detection: Application of electrochemical aptasensors in modern medical diagnostics. Sensors 21, 724 (2021).
doi: 10.3390/s21030724
pubmed: 33494499
pmcid: 7866209
Shim, W. B., Kim, M. J., Mun, H. & Kim, M. G. An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1. Biosens. Bioelectron. 62, 288–294 (2014).
doi: 10.1016/j.bios.2014.06.059
pubmed: 25032679