Genetic factors explaining anthocyanin pigmentation differences.
Anthocyanins
DFR
Flavonoid biosynthesis
Gene expression
MYB
Systematic comparison
Transcription factor
Transcriptome
Journal
BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807
Informations de publication
Date de publication:
03 Jul 2024
03 Jul 2024
Historique:
received:
15
11
2023
accepted:
20
06
2024
medline:
4
7
2024
pubmed:
4
7
2024
entrez:
3
7
2024
Statut:
epublish
Résumé
Anthocyanins are important contributors to coloration across a wide phylogenetic range of plants. Biological functions of anthocyanins span from reproduction to protection against biotic and abiotic stressors. Owing to a clearly visible phenotype of mutants, the anthocyanin biosynthesis and its sophisticated regulation have been studied in numerous plant species. Genes encoding the anthocyanin biosynthesis enzymes are regulated by a transcription factor complex comprising MYB, bHLH and WD40 proteins. A systematic comparison of anthocyanin-pigmented vs. non-pigmented varieties was performed within numerous plant species covering the taxonomic diversity of flowering plants. The literature was screened for cases in which genetic factors causing anthocyanin loss were reported. Additionally, transcriptomic data sets from four previous studies were reanalyzed to determine the genes possibly responsible for color variation based on their expression pattern. The contribution of different structural and regulatory genes to the intraspecific pigmentation differences was quantified. Differences concerning transcription factors are by far the most frequent explanation for pigmentation differences observed between two varieties of the same species. Among the transcription factors in the analyzed cases, MYB genes are significantly more prone to account for pigmentation differences compared to bHLH or WD40 genes. Among the structural genes, DFR genes are most often associated with anthocyanin loss. These findings support previous assumptions about the susceptibility of transcriptional regulation to evolutionary changes and its importance for the evolution of novel coloration phenotypes. Our findings underline the particular significance of MYBs and their apparent prevalent role in the specificity of the MBW complex.
Sections du résumé
BACKGROUND
BACKGROUND
Anthocyanins are important contributors to coloration across a wide phylogenetic range of plants. Biological functions of anthocyanins span from reproduction to protection against biotic and abiotic stressors. Owing to a clearly visible phenotype of mutants, the anthocyanin biosynthesis and its sophisticated regulation have been studied in numerous plant species. Genes encoding the anthocyanin biosynthesis enzymes are regulated by a transcription factor complex comprising MYB, bHLH and WD40 proteins.
RESULTS
RESULTS
A systematic comparison of anthocyanin-pigmented vs. non-pigmented varieties was performed within numerous plant species covering the taxonomic diversity of flowering plants. The literature was screened for cases in which genetic factors causing anthocyanin loss were reported. Additionally, transcriptomic data sets from four previous studies were reanalyzed to determine the genes possibly responsible for color variation based on their expression pattern. The contribution of different structural and regulatory genes to the intraspecific pigmentation differences was quantified. Differences concerning transcription factors are by far the most frequent explanation for pigmentation differences observed between two varieties of the same species. Among the transcription factors in the analyzed cases, MYB genes are significantly more prone to account for pigmentation differences compared to bHLH or WD40 genes. Among the structural genes, DFR genes are most often associated with anthocyanin loss.
CONCLUSIONS
CONCLUSIONS
These findings support previous assumptions about the susceptibility of transcriptional regulation to evolutionary changes and its importance for the evolution of novel coloration phenotypes. Our findings underline the particular significance of MYBs and their apparent prevalent role in the specificity of the MBW complex.
Identifiants
pubmed: 38961369
doi: 10.1186/s12870-024-05316-w
pii: 10.1186/s12870-024-05316-w
doi:
Substances chimiques
Anthocyanins
0
Transcription Factors
0
Plant Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
627Informations de copyright
© 2024. The Author(s).
Références
Alkema J, Seager SL. The chemical pigments of plants. J Chem Educ. 1982;59(3):183.
doi: 10.1021/ed059p183
Davies KM, Albert NW, Schwinn KE, Davies KM, Albert NW, Schwinn KE. From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct Plant Biol. 2012;39(8):619–38.
pubmed: 32480814
doi: 10.1071/FP12195
Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 2008;54(4):733–49.
pubmed: 18476875
doi: 10.1111/j.1365-313X.2008.03447.x
Grotewold E. The Genetics and Biochemistry of Floral pigments. Annu Rev Plant Biol. 2006;57(1):761–80.
pubmed: 16669781
doi: 10.1146/annurev.arplant.57.032905.105248
Ruiz-Sola MÁ, Rodríguez-Concepción M. Carotenoid Biosynthesis in Arabidopsis: A Colorful Pathway. Arab Book [Internet]. 2012 Jan [cited 2023 Nov 7];2012(10). https://bioone.org/journals/the-arabidopsis-book/volume–2012/issue–10/tab.0158/Carotenoid-Biosynthesis-in-Arabidopsis-A https://doi.org/10.1199/tab.0158.full .
Burns KC, Dalen JL. Foliage color contrasts and adaptive fruit color variation in a bird-dispersed plant community. Oikos. 2002;96(3):463–9.
doi: 10.1034/j.1600-0706.2002.960308.x
Gould KS. Nature’s Swiss Army Knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechnol. 2004;2004(5):314–20.
pubmed: 15577195
pmcid: 1082902
Chutipaijit S, Cha-um S, Sompornpailin K. High contents of proline and anthocyanin increase protective response to salinity in Oryza sativa L. spp. indica. Aust J Crop Sci. 2011;5(10):1191–8.
Hernández I, Alegre L, Munné-Bosch S. Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol. 2004;24(11):1303–11.
pubmed: 15339740
doi: 10.1093/treephys/24.11.1303
Lois R. Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Arabidopsis thaliana L.: I. mechanisms of UV-resistance in Arabidopsis. Planta. 1994;194(4):498–503.
doi: 10.1007/BF00714462
Kootstra A. Protection from UV-B-induced DNA damage by flavonoids. Plant Mol Biol. 1994;26(2):771–4.
pubmed: 7948931
doi: 10.1007/BF00013762
Samanta A, Das G, Das SK. Roles Flavonoids Plants. 2011;6(1):12–35.
Abid MA, Wei Y, Meng Z, Wang Y, Ye Y, Wang Y, et al. Increasing floral visitation and hybrid seed production mediated by beauty mark in Gossypium hirsutum. Plant Biotechnol J. 2022;20(7):1274–84.
pubmed: 35266277
pmcid: 9241374
doi: 10.1111/pbi.13805
Whittall JB, Hodges SA. Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature. 2007;447(7145):706–9.
pubmed: 17554306
doi: 10.1038/nature05857
Thompson WR, Meinwald J, Aneshansley D, Eisner T. Flavonols: pigments responsible for Ultraviolet absorption in Nectar Guide of Flower |. Science. 1972;177.
Yonekura-Sakakibara K, Tohge T, Niida R, Saito K. Identification of a flavonol 7-O-Rhamnosyltransferase gene determining Flavonoid Pattern in Arabidopsis by Transcriptome Coexpression Analysis and Reverse Genetics. J Biol Chem. 2007;282(20):32–41.
doi: 10.1074/jbc.M611498200
Tohge T, de Souza LP, Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J Exp Bot. 2017;68(15):4013–28.
pubmed: 28922752
doi: 10.1093/jxb/erx177
Yonekura-Sakakibara K, Nakayama T, Yamazaki M, Saito K. Modification and Stabilization of Anthocyanins. Winefield C, Davies K, Gould K, editors. Anthocyanins Biosynth Funct Appl. 2009;169–90.
Davies KM, Schwinn KE, Deroles SC, Manson DG, Lewis DH, Bloor SJ, et al. Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica. 2003;131(3):259–68.
doi: 10.1023/A:1024018729349
Mazza G, Brouillard R. The mechanism of co-pigmentation of anthocyanins in aqueous solutions. Phytochemistry. 1990;29(4):1097–102.
doi: 10.1016/0031-9422(90)85411-8
Yabuya T, Nakamura M, Iwashina T, Yamaguchi M, Takehara T. Anthocyanin-flavone copigmentation in bluish purple flowers of Japanese garden iris (Iris ensata Thunb). Euphytica. 1997;98(3):163–7.
doi: 10.1023/A:1003152813333
Sendri N, Singh S, Sharma B, Purohit R, Bhandari P. Effect of co-pigments on anthocyanins of Rhododendron arboreum and insights into interaction mechanism. Food Chem. 2023;426:136571.
pubmed: 37331145
doi: 10.1016/j.foodchem.2023.136571
Horbowicz M, Kosson R, Grzesiuk A, Dębski H. Anthocyanins of fruits and vegetables - their occurrence, analysis and role in Human Nutrition. J Fruit Ornam Plant Res. 2008;68(1):5–22.
doi: 10.2478/v10032-008-0001-8
Dick CA, Buenrostro J, Butler T, Carlson ML, Kliebenstein DJ, Whittall JB. Arctic Mustard Flower Color Polymorphism controlled by Petal-Specific Downregulation at the threshold of the anthocyanin Biosynthetic Pathway. PLoS ONE. 2011;6(4):e18230.
pubmed: 21490971
pmcid: 3072389
doi: 10.1371/journal.pone.0018230
Ghissing U, Goswami A, Mitra A. Temporal accumulation of pigments during colour transformation from white to red in Combretum indicum (L.) DeFilipps (syn. Quisqualis indica L.) flowers. Nat Prod Res. 2021;37(3):529–33.
pubmed: 34583599
doi: 10.1080/14786419.2021.1984467
Dai Y, Zhang L, Sun X, Li F, Zhang S, Zhang H, et al. Transcriptome analysis reveals anthocyanin regulation in Chinese cabbage (Brassica rapa L.) at low temperatures. Sci Rep. 2022;12(1):6308.
pubmed: 35428824
pmcid: 9012755
doi: 10.1038/s41598-022-10106-1
Koes RE, Quattrocchio F, Mol JNM. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays. 1994;16(2):123–32.
doi: 10.1002/bies.950160209
Schütz K, Kammerer DR, Carle R, Schieber A. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. Ex WIGG.) Root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom RCM. 2005;19(2):179–86.
pubmed: 15593267
doi: 10.1002/rcm.1767
Zhang Z, CHEN SM, LI CH Y-M, DENG X-R, ZHU W. SUN4,5, L.-S. WANG2, F.-D. CHEN1* and Z. ZHANG. The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers. Biol Plant. 2012;56((3)):458–64.
Wang Y, Zhou LJ, Wang Y, Liu S, Geng Z, Song A, et al. Functional identification of a flavone synthase and a flavonol synthase genes affecting flower color formation in Chrysanthemum morifolium. Plant Physiol Biochem. 2021;166:1109–20.
pubmed: 34328869
doi: 10.1016/j.plaphy.2021.07.019
Constabel CP. Molecular controls of Proanthocyanidin Synthesis and structure: prospects for Genetic Engineering in Crop plants. J Agric Food Chem. 2018;66(38):9882–8.
pubmed: 30139248
doi: 10.1021/acs.jafc.8b02950
Dixon RA, Xie D, Sharma SB. Proanthocyanidins – a final frontier in flavonoid research? New Phytol. 2005;165(1):9–28.
pubmed: 15720617
doi: 10.1111/j.1469-8137.2004.01217.x
Leung J, Fenton TW, Mueller MM, Clandinin OR. Condensed tannins of Rapeseed Meal. J Food Sci. 1979;44(5):1313–7.
doi: 10.1111/j.1365-2621.1979.tb06427.x
Park KI, Ishikawa N, Morita Y, Choi JD, Hoshino A, Iida S. A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation: epidermal traits controlled by bHLH2. Plant J. 2007;49(4):641–54.
pubmed: 17270013
doi: 10.1111/j.1365-313X.2006.02988.x
Winkel-Shirley B, Flavonoid Biosynthesis. A colorful model for Genetics, Biochemistry, Cell Biology, and Biotechnology. Plant Physiol. 2001;126(2):485–93.
pubmed: 11402179
pmcid: 1540115
doi: 10.1104/pp.126.2.485
Mueller LA, Goodman CD, Silady RA, Walbot V. AN9, a Petunia glutathione S-Transferase required for anthocyanin sequestration, is a flavonoid-binding Protein1. Plant Physiol. 2000;123(4):1561–70.
pubmed: 10938372
pmcid: 59113
doi: 10.1104/pp.123.4.1561
Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J. 2004;37(1):104–14.
pubmed: 14675436
doi: 10.1046/j.1365-313X.2003.01943.x
Eichenberger M, Schwander T, Hüppi S, Kreuzer J, Mittl PRE, Peccati F et al. The catalytic role of glutathione transferases in heterologous anthocyanin biosynthesis. Nat Catal. 2023;1–12.
Grotewold E, Davies K. Trafficking and sequestration of anthocyanins. Nat Prod Commun. 2008;3(8).
Kitamura S, Oono Y, Narumi I. Arabidopsis pab1, a mutant with reduced anthocyanins in immature seeds from banyuls, harbors a mutation in the MATE transporter FFT. Plant Mol Biol. 2016;90(1):7–18.
pubmed: 26608698
doi: 10.1007/s11103-015-0389-8
Zhao J. Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci. 2015;20(9):576–85.
pubmed: 26205169
doi: 10.1016/j.tplants.2015.06.007
Pucker B, Selmar D. Biochemistry and Molecular Basis of Intracellular Flavonoid Transport in plants. Plants. 2022;11(7):963.
pubmed: 35406945
pmcid: 9002769
doi: 10.3390/plants11070963
Grotewold E, Chamberlin M, Snook M, Siame B, Butler L, Swenson J, et al. Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell. 1998;10(5):721–40.
pubmed: 9596632
pmcid: 144024
doi: 10.1105/tpc.10.5.721
Pourcel L, Irani NG, Lu Y, Riedl K, Schwartz S, Grotewold E. The formation of Anthocyanic Vacuolar inclusions in Arabidopsis thaliana and implications for the sequestration of anthocyanin pigments. Mol Plant. 2010;3(1):78–90.
pubmed: 20085894
doi: 10.1093/mp/ssp071
Gomez C, Conejero G, Torregrosa L, Cheynier V, Terrier N, Ageorges A. In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J. 2011;67(6):960–70.
pubmed: 21605207
doi: 10.1111/j.1365-313X.2011.04648.x
Mackon E, Ma Y, Jeazet Dongho Epse Mackon GC, Li Q, Zhou Q, Liu P. Subcellular localization and Vesicular Structures of Anthocyanin Pigmentation by Fluorescence Imaging of Black Rice (Oryza sativa L.) Stigma Protoplast. Plants. 2021;10(4):685.
pubmed: 33918111
pmcid: 8066712
doi: 10.3390/plants10040685
Poustka F, Irani NG, Feller A, Lu Y, Pourcel L, Frame K, et al. A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting Route in Arabidopsis and contributes to the formation of Vacuolar inclusions. Plant Physiol. 2007;145(4):1323–35.
pubmed: 17921343
pmcid: 2151709
doi: 10.1104/pp.107.105064
Zhao J, Dixon RA. The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci. 2010;15(2):72–80.
pubmed: 20006535
doi: 10.1016/j.tplants.2009.11.006
Marrs KA, Alfenlto MR, Lloyd AM. A glutathione $-transferase involved in vacuolar transfer encoded by the maize gene Bronze–2. 1995;375.
Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, et al. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell. 1998;10(7):1135–49.
pubmed: 9668133
pmcid: 144053
doi: 10.1105/tpc.10.7.1135
Lu Z, Cao H, Pan L, Niu L, Wei B, Cui G, et al. Two loss-of-function alleles of the glutathione S-transferase (GST) gene cause anthocyanin deficiency in flower and fruit skin of peach (Prunus persica). Plant J. 2021;107(5):1320–31.
pubmed: 33964100
doi: 10.1111/tpj.15312
Kaur S, Sharma N, Kapoor P, Chunduri V, Pandey AK, Garg M. Spotlight on the overlapping routes and partners for anthocyanin transport in plants. Physiol Plant. 2021;171(4):868–81.
pubmed: 33639001
doi: 10.1111/ppl.13378
Debeaujon I, Peeters AJM, Léon-Kloosterziel KM, Koornneef M. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a Multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed Coat Endothelium. Plant Cell. 2001;13(4):853–71.
pubmed: 11283341
pmcid: 135529
doi: 10.1105/tpc.13.4.853
Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, et al. The Arabidopsis MATE Transporter TT12 acts as a Vacuolar Flavonoid/H+-Antiporter active in Proanthocyanidin-Accumulating cells of the seed Coat. Plant Cell. 2007;19(6):2023–38.
pubmed: 17601828
pmcid: 1955721
doi: 10.1105/tpc.106.046029
Mehrtens F, Kranz H, Bednarek P, Weisshaar B. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol. 2005;138(2):1083–96.
pubmed: 15923334
pmcid: 1150422
doi: 10.1104/pp.104.058032
Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 2007;50(4):660–77.
pubmed: 17419845
pmcid: 1976380
doi: 10.1111/j.1365-313X.2007.03078.x
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15(10):573–81.
pubmed: 20674465
doi: 10.1016/j.tplants.2010.06.005
Ramsay NA, Glover BJ. MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci. 2005;10(2):63–70.
pubmed: 15708343
doi: 10.1016/j.tplants.2004.12.011
Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L. The TT8 gene encodes a Basic Helix-Loop-Helix domain protein required for expression of DFR and BAN genes in Arabidopsis Siliques. Plant Cell. 2000;12(10):1863–78.
pubmed: 11041882
pmcid: 149125
doi: 10.1105/tpc.12.10.1863
Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 2004;39(3):366–80.
pubmed: 15255866
doi: 10.1111/j.1365-313X.2004.02138.x
Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 2008;53(5):814–27.
pubmed: 18036197
doi: 10.1111/j.1365-313X.2007.03373.x
Zhang B, Hülskamp M. Evolutionary analysis of MBW function by Phenotypic Rescue in Arabidopsis thaliana. Front Plant Sci. 2019;10.
Busche M, Pucker B, Weisshaar B, Stracke R, Three. R2R3-MYB transcription factors from banana (Musa acuminata) activate structural anthocyanin biosynthesis genes as part of an MBW complex. BMC Res Notes. 2023;16(1):103.
pubmed: 37312204
pmcid: 10262479
doi: 10.1186/s13104-023-06375-2
Jiang L, Yue M, Liu Y, Zhang N, Lin Y, Zhang Y, et al. A novel R2R3-MYB transcription factor FaMYB5 positively regulates anthocyanin and proanthocyanidin biosynthesis in cultivated strawberries (Fragaria × ananassa). Plant Biotechnol J. 2023;21(6):1140–58.
pubmed: 36752420
pmcid: 10214752
doi: 10.1111/pbi.14024
Symonds VV, Hatlestad G, Lloyd AM. Natural allelic variation defines a role for ATMYC1: Trichome Cell Fate determination. PLOS Genet. 2011;7(6).
Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell. 2000;12(12):2383–94.
pubmed: 11148285
pmcid: 102225
doi: 10.1105/tpc.12.12.2383
Lafferty DJ, Espley RV, Deng CH, Günther CS, Plunkett B, Turner JL, et al. Hierarchical regulation of MYBPA1 by anthocyanin- and proanthocyanidin-related MYB proteins is conserved in Vaccinium species. J Exp Bot. 2022;73(5):1344–56.
pubmed: 34664645
doi: 10.1093/jxb/erab460
Li Y, Shan X, Gao R, Yang S, Wang S, Gao X, et al. Two IIIf Clade-bHLHs from Freesia Hybrida Play Divergent roles in Flavonoid biosynthesis and trichome formation when ectopically expressed in Arabidopsis. Sci Rep. 2016;6(1):30514.
pubmed: 27465838
pmcid: 4964595
doi: 10.1038/srep30514
Zumajo-Cardona C, Gabrieli F, Anire J, Albertini E, Ezquer I, Colombo L. Evolutionary studies of the bHLH transcription factors belonging to MBW complex: their role in seed development. Ann Bot. 2023;132(3):383–400.
pubmed: 37467144
doi: 10.1093/aob/mcad097
Feller A, Machemer K, Braun EL, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 2011;66(1):94–116.
pubmed: 21443626
doi: 10.1111/j.1365-313X.2010.04459.x
Broun P. Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol. 2005;8(3):272–9.
pubmed: 15860424
doi: 10.1016/j.pbi.2005.03.006
Martin C, Ellis N, Rook F. Do transcription factors play special roles in adaptive variation? Plant Physiol. 2010;154(2):506–11.
pubmed: 20921174
pmcid: 2949032
doi: 10.1104/pp.110.161331
Streisfeld MA, Liu D, Rausher MD. Predictable patterns of constraint among anthocyanin-regulating transcription factors in Ipomoea. New Phytol. 2011;191(1):264–74.
pubmed: 21366597
doi: 10.1111/j.1469-8137.2011.03671.x
Streisfeld MA, Rausher MD. Population genetics, pleiotropy, and the preferential fixation of mutations during adaptive evolution: mutations during adaptive evolution. Evolution. 2011;65(3):629–42.
pubmed: 21054357
doi: 10.1111/j.1558-5646.2010.01165.x
Streisfeld MA, Rausher MD. Genetic changes contributing to the parallel evolution of red floral pigmentation among Ipomoea species. New Phytol. 2009;183(3):751–63.
pubmed: 19594698
doi: 10.1111/j.1469-8137.2009.02929.x
Smith SD, Rausher MD. Gene loss and parallel evolution contribute to Species Difference in Flower Color. Mol Biol Evol. 2011;28(10):2799–810.
pubmed: 21551271
pmcid: 3203625
doi: 10.1093/molbev/msr109
Almeida J, Carpenter R, Robbins TP, Martin C, Coen ES. Genetic interactions underlying flower color patterns in Antirrhinum majus. Genes Dev. 1989;3(11):1758–67.
pubmed: 2558047
doi: 10.1101/gad.3.11.1758
Onozaki T, Mato M, Shibata M, Ikeda H. Differences in flower color and pigment composition among white carnation (Dianthus Caryophyllus L.) cultivars. Sci Hortic. 1999;82(1–2):103–11.
Zufall RA. The genetic basis of a Flower Color Polymorphism in the Common Morning Glory (Ipomoea purpurea). J Hered. 2003;94(6):442–8.
pubmed: 14691310
doi: 10.1093/jhered/esg098
Timoneda A, Feng T, Sheehan H, Walker-Hale N, Pucker B, Lopez‐Nieves S, et al. The evolution of betalain biosynthesis in Caryophyllales. New Phytol. 2019;224(1):71–85.
pubmed: 31172524
doi: 10.1111/nph.15980
Clement JS, Mabry TJ. Pigment evolution in the Caryophyllales: a systematic Overview*. Bot Acta. 1996;109(5):360–7.
doi: 10.1111/j.1438-8677.1996.tb00584.x
Bate-Smith EC. The phenolic constituents of plants and their taxonomic significance. I. Dicotyledons. J Linn Soc Lond Bot. 1962;58(371):95–173.
doi: 10.1111/j.1095-8339.1962.tb00890.x
Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, et al. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 1995;8(5):659–71.
pubmed: 8528278
doi: 10.1046/j.1365-313X.1995.08050659.x
Castellarin SD, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, Paillard S, et al. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3’-hydroxylase, flavonoid 3’,5’-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics. 2006;7(1):12.
pubmed: 16433923
pmcid: 1403756
doi: 10.1186/1471-2164-7-12
Chen Z, Yu L, Liu W, Zhang J, Wang N, Chen X. Research progress of fruit color development in apple (Malus domestica Borkh). Plant Physiol Biochem. 2021;162:267–79.
pubmed: 33711720
doi: 10.1016/j.plaphy.2021.02.033
Naeem M, Zhao W, Ahmad N, Zhao L. Beyond green and red: unlocking the genetic orchestration of tomato fruit color and pigmentation. Funct Integr Genomics. 2023;23(3):243.
pubmed: 37453947
doi: 10.1007/s10142-023-01162-5
Shoeva OY, Mock HP, Kukoeva TV, Börner A, Khlestkina EK. Regulation of the flavonoid biosynthesis pathway genes in purple and black grains of Hordeum vulgare. PLoS ONE. 2016;11(10):e0163782.
pubmed: 27706214
pmcid: 5051897
doi: 10.1371/journal.pone.0163782
Jiao F, Zhao L, Wu X, Song Z, Li Y. Metabolome and transcriptome analyses of the molecular mechanisms of flower color mutation in tobacco. BMC Genomics. 2020;21(1):611.
pubmed: 32894038
pmcid: 7487631
doi: 10.1186/s12864-020-07028-5
Zheng Y, Chen Y, Liu Z, Wu H, Jiao F, Xin H, et al. Important roles of key genes and Transcription Factors in Flower Color Differences of Nicotiana alata. Genes. 2021;12(12):1976.
pubmed: 34946925
pmcid: 8701347
doi: 10.3390/genes12121976
Rausher MD. Evolutionary transitions in Floral Color. Int J Plant Sci. 2008;169(1):7–21.
doi: 10.1086/523358
Luo P, Ning G, Wang Z, Shen Y, Jin H, Li P et al. Disequilibrium of Flavonol synthase and Dihydroflavonol–4-Reductase expression Associated tightly to White vs. Red Color Flower formation in plants. Front Plant Sci. 2016;6.
Deutscher D, Meilijson I, Schuster S, Ruppin E. Can single knockouts accurately single out gene functions? BMC Syst Biol. 2008;2(1):50.
pubmed: 18564419
pmcid: 2443110
doi: 10.1186/1752-0509-2-50
Wheeler LC, Dunbar-Wallis A, Schutz K, Smith SD. Evolutionary walks through flower colour space driven by gene expression in Petunia and allies (Petunieae). Proc R Soc B Biol Sci. 2023;290(2002):20230275.
Metzger BPH, Duveau F, Yuan DC, Tryban S, Yang B, Wittkopp PJ. Contrasting frequencies and effects of cis - and trans -Regulatory mutations affecting gene expression. Mol Biol Evol. 2016;33(5):1131–46.
pubmed: 26782996
pmcid: 4909133
doi: 10.1093/molbev/msw011
Benowitz KM, Coleman JM, Allan CW, Matzkin LM. Contributions of cis- and trans-Regulatory Evolution to Transcriptomic Divergence across Populations in the Drosophila mojavensis Larval Brain. Betran E, editor. Genome Biol Evol. 2020;12(8):1407–18.
Gates DJ, Olson BJSC, Clemente TE, Smith SD. A novel R3 MYB transcriptional repressor associated with the loss of floral pigmentation in Iochroma. New Phytol. 2018;217(3):1346–56.
pubmed: 29023752
doi: 10.1111/nph.14830
Vimolmangkang S, Han Y, Wei G, Korban SS. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development. BMC Plant Biol. 2013;13(1):176.
pubmed: 24199943
pmcid: 3833268
doi: 10.1186/1471-2229-13-176
Takahashi R, Yamagishi N, Yoshikawa N. A MYB Transcription Factor Controls Flower Color in soybean. J Hered. 2013;104(1):149–53.
pubmed: 23048163
doi: 10.1093/jhered/ess081
Streisfeld MA, Young WN, Sobel JM. Divergent selection drives genetic differentiation in an R2R3-MYB transcription factor that contributes to Incipient Speciation in Mimulus aurantiacus. PLOS Genet. 2013;9(3):e1003385.
pubmed: 23555295
pmcid: 3605050
doi: 10.1371/journal.pgen.1003385
Quattrocchio F, Wing JF, Leppen HTC, Mol JNM, Koes RE. Regulatory genes Controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of Target Genes.:17.
Farré G, Blancquaert D, Capell T, Van Der Straeten D, Christou P, Zhu C. Engineering Complex metabolic pathways in plants. Annu Rev Plant Biol. 2014;65(1):187–223.
pubmed: 24579989
doi: 10.1146/annurev-arplant-050213-035825
Winkel BSJ. Metabolic channeling in plants. Annu Rev Plant Biol. 2004;55(1):85–107.
pubmed: 15725058
doi: 10.1146/annurev.arplant.55.031903.141714
Finnegan PM, Chen W. Arsenic toxicity: the effects on plant metabolism. Front. Physio. 2012;3:182. https://doi.org/10.3389/fphys.2012.00182 .
Zhang P, Du H, Wang J, Pu Y, Yang C, Yan R, et al. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol J. 2020;18(6):1384–95.
pubmed: 31769589
doi: 10.1111/pbi.13302
Ruxton GD, Schaefer HM. Floral colour change as a potential signal to pollinators. Curr Opin Plant Biol. 2016;32:96–100.
pubmed: 27428780
doi: 10.1016/j.pbi.2016.06.021
Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci. 2011;181(3):219–29.
pubmed: 21763532
doi: 10.1016/j.plantsci.2011.05.009
Willmer P, Stanley DA, Steijven K, Matthews IM, Nuttman CV. Bidirectional Flower Color and shape changes allow a second opportunity for pollination. Curr Biol. 2009;19(11):919–23.
pubmed: 19409788
doi: 10.1016/j.cub.2009.03.070
Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE, Davies KM. Light-induced vegetative anthocyanin pigmentation in Petunia. J Exp Bot. 2009;60(7):2191–202.
pubmed: 19380423
pmcid: 2682507
doi: 10.1093/jxb/erp097
Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J. 2014;77(3):367–79.
pubmed: 24274116
doi: 10.1111/tpj.12388
Butler T, Dick C, Carlson ML, Whittall JB. Transcriptome analysis of a Petal Anthocyanin Polymorphism in the Arctic Mustard, Parrya nudicaulis. PLoS ONE. 2014;9(7):e101338.
pubmed: 25033465
pmcid: 4102464
doi: 10.1371/journal.pone.0101338
Sobel JM, Streisfeld MA. Flower color as a model system for studies of plant evo-devo. Front. Plant Sci. 2013;4:321. https://doi.org/10.3389/fpls.2013.00321 .
Brockington SF, Yang Y, Gandia-Herrero F, Covshoff S, Hibberd JM, Sage RF, et al. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytol. 2015;207(4):1170–80.
pubmed: 25966996
pmcid: 4557044
doi: 10.1111/nph.13441
Ho WW, Smith SD. Molecular evolution of anthocyanin pigmentation genes following losses of flower color. BMC Evol Biol. 2016;16(1):98.
pubmed: 27161359
pmcid: 4862180
doi: 10.1186/s12862-016-0675-3
Sapir Y, Gallagher MK, Senden E. What maintains Flower Colour variation within populations? Trends Ecol Evol. 2021;36(6):507–19.
pubmed: 33663870
doi: 10.1016/j.tree.2021.01.011
Roguz K, Gallagher MK, Senden E, Bar-Lev Y, Lebel M, Heliczer R, et al. All the colors of the Rainbow: diversification of Flower Color and Intraspecific Color Variation in the Genus Iris. Front Plant Sci. 2020;11:569811.
pubmed: 33154761
pmcid: 7588356
doi: 10.3389/fpls.2020.569811
Goodrich J, Carpenter R, Coen ES. A common gene regulates pigmentation pattern in diverse plant species. Cell. 1992;68(5):955–64.
pubmed: 1547495
doi: 10.1016/0092-8674(92)90038-E
Duan HR, Wang LR, Cui GX, Zhou XH, Duan XR, Yang HS. Identification of the regulatory networks and hub genes controlling alfalfa floral pigmentation variation using RNA-sequencing analysis. BMC Plant Biol. 2020;20(1):110.
pubmed: 32164566
pmcid: 7068929
doi: 10.1186/s12870-020-2322-9
Liu C, Wang X, Shulaev V, Dixon RA. A role for leucoanthocyanidin reductase in the extension of proanthocyanidins. Nat Plants. 2016;2(12):16182.
pubmed: 27869786
doi: 10.1038/nplants.2016.182
Rausher MD, Miller RE, Tiffin P. Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. Mol Biol Evol. 1999;16(2):266–74.
pubmed: 10028292
doi: 10.1093/oxfordjournals.molbev.a026108
Ramos-Onsins SE, Puerma E, Balañá‐Alcaide D, Salguero D, Aguadé M. Multilocus analysis of variation using a large empirical data set: phenylpropanoid pathway genes in Arabidopsis thaliana. Mol Ecol. 2008;17(5):1211–23.
pubmed: 18221273
doi: 10.1111/j.1365-294X.2007.03633.x
Shoeva OYu G, AYu, Khlestkina EK. The factors affecting the evolution of the anthocyanin biosynthesis pathway genes in monocot and dicot plant species. BMC Plant Biol. 2017;17(2):256.
doi: 10.1186/s12870-017-1190-4
Wheeler LC, Walker JF, Ng J, Deanna R, Dunbar-Wallis A, Backes A et al. Transcription factors evolve faster than their structural gene targets in the Flavonoid pigment pathway. Mol Biol Evol. 2022;39(3).
Winkel-Shirley B. Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol Plant. 1999;107(1):142–9.
doi: 10.1034/j.1399-3054.1999.100119.x
Wang Y, Chen S, Yu O. Metabolic engineering of flavonoids in plants and microorganisms. Appl Microbiol Biotechnol. 2011;91(4):949–56.
pubmed: 21732240
doi: 10.1007/s00253-011-3449-2
Choudhary N, Pucker B. Conserved amino acid residues and gene expression patterns associated with the substrate preferences of the competing enzymes FLS and DFR. bioRxiv. 2024;2023.11.05.565693. https://doi.org/10.1101/2023.11.05.565693 .
Stafford HA. Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Sci. 1994;101(2):91–8.
doi: 10.1016/0168-9452(94)90244-5
Ballester AR, Molthoff J, de Vos R, Hekkert B, te L, Orzaez D, Fernandez-Moreno JP, et al. Biochemical and Molecular Analysis of Pink Tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to Pink Tomato Fruit Color. Plant Physiol. 2010;152(1):71–84.
pubmed: 19906891
pmcid: 2799347
doi: 10.1104/pp.109.147322
Sun SS, Gugger PF, Wang QF, Chen JM. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans). PeerJ. 2016;4:e2369.
pubmed: 27635336
pmcid: 5012265
doi: 10.7717/peerj.2369
Zhao A, Cui Z, Li T, Pei H, Sheng Y, Li X, et al. mRNA and miRNA expression analysis reveal the regulation for Flower Spot Patterning in Phalaenopsis ‘Panda’. Int J Mol Sci. 2019;20(17):4250.
pubmed: 31480267
pmcid: 6747512
doi: 10.3390/ijms20174250
Peng J, Dong X, Xue C, Liu Z, Cao F. Exploring the Molecular Mechanism of Blue Flower Color Formation in Hydrangea macrophylla cv. Forever Summer Front Plant Sci. 2021;12:585665.
pubmed: 33679822
doi: 10.3389/fpls.2021.585665
Nakatsuka A, Yamagishi M, Nakano M, Tasaki K, Kobayashi N. Light-induced expression of basic helix-loop-helix genes involved in anthocyanin biosynthesis in flowers and leaves of Asiatic hybrid lily. Sci Hortic. 2009;121(1):84–91.
doi: 10.1016/j.scienta.2009.01.008
Li H, Yang Z, Zeng Q, Wang S, Luo Y, Huang Y, et al. Abnormal expression of bHLH3 disrupts a flavonoid homeostasis network, causing differences in pigment composition among mulberry fruits. Hortic Res. 2020;7(1):1–19.
pubmed: 31908804
pmcid: 6938484
doi: 10.1038/s41438-020-0302-8
Lim SH, Kim DH, Kim JK, Lee JY, Ha SH. A Radish Basic Helix-Loop-Helix transcription factor, RsTT8 acts a positive Regulator for Anthocyanin Biosynthesis. Front Plant Sci. 2017;8:1917.
pubmed: 29167678
pmcid: 5682339
doi: 10.3389/fpls.2017.01917
Pál C, Papp B, Hurst LD. Highly expressed genes in yeast evolve slowly. Genetics. 2001;158(2):927–31.
pubmed: 11430355
pmcid: 1461684
doi: 10.1093/genetics/158.2.927
Gout JF, Kahn D, Duret L, Consortium PPG. The relationship among Gene expression, the evolution of Gene Dosage, and the rate of protein evolution. PLOS Genet. 2010;6(5):e1000944.
pubmed: 20485561
pmcid: 2869310
doi: 10.1371/journal.pgen.1000944
Yang L, Gaut BS. Factors that contribute to variation in evolutionary rate among Arabidopsis genes. Mol Biol Evol. 2011;28(8):2359–69.
pubmed: 21389272
doi: 10.1093/molbev/msr058
Guo Y, Liu J, Zhang J, Liu S, Du J. Selective modes determine evolutionary rates, gene compactness and expression patterns in Brassica. Plant J. 2017;91(1):34–44.
pubmed: 28332757
doi: 10.1111/tpj.13541
Tao W, Li R, Li T, Li Z, Li Y, Cui L, The evolutionary patterns, expression profiles, and genetic diversity of expanded genes in barley. Front. Plant Sci. 2023;14:1168124. https://doi.org/10.3389/fpls.2023.1168124 .
Song H, Gao H, Liu J, Tian P, Nan Z. Comprehensive analysis of correlations among codon usage bias, gene expression, and substitution rate in Arachis duranensis and Arachis ipaënsis orthologs. Sci Rep. 2017;7(1):14853.
pubmed: 29093502
pmcid: 5665869
doi: 10.1038/s41598-017-13981-1
Nuzhdin SV, Wayne ML, Harmon KL, McIntyre LM. Common pattern of evolution of Gene expression level and protein sequence in Drosophila. Mol Biol Evol. 2004;21(7):1308–17.
pubmed: 15034135
doi: 10.1093/molbev/msh128
Pucker B, Walker-Hale N, Dzurlic J, Yim WC, Cushman JC, Crum A, Yang Y, Brockington SF. Multiple mechanisms explain loss of anthocyanins from betalain-pigmented Caryophyllales, including repeated wholesale loss of a key anthocyanidin synthesis enzyme. New Phytol. 2024;241:471–489. https://doi.org/10.1111/nph.19341 .
Guillaume F, Otto SP. Gene Functional Trade-Offs and the evolution of Pleiotropy. Genetics. 2012;192(4):1389–409.
pubmed: 22982578
pmcid: 3512146
doi: 10.1534/genetics.112.143214
Sakuta M, Tanaka A, Iwase K, Miyasaka M, Ichiki S, Hatai M, et al. Anthocyanin synthesis potential in betalain-producing Caryophyllales plants. J Plant Res. 2021;134(6):1335–49.
pubmed: 34477986
pmcid: 8930957
doi: 10.1007/s10265-021-01341-0
Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J. 2004;40(1):22–34.
pubmed: 15361138
doi: 10.1111/j.1365-313X.2004.02183.x
Hatlestad GJ, Akhavan NA, Sunnadeniya RM, Elam L, Cargile S, Hembd A, et al. The beet Y locus encodes an anthocyanin MYB-like protein that activates the betalain red pigment pathway. Nat Genet. 2015;47(1):92–6.
pubmed: 25436858
doi: 10.1038/ng.3163
Mitsuda N, Ohme-Takagi M. Functional Analysis of Transcription Factors in Arabidopsis. Plant Cell Physiol. 2009;50(7):1232–48.
pubmed: 19478073
pmcid: 2709548
doi: 10.1093/pcp/pcp075
Ali F, Seshasayee ASN. Dynamics of genetic variation in transcription factors and its implications for the evolution of regulatory networks in Bacteria. Nucleic Acids Res. 2020;48(8):4100–14.
pubmed: 32182360
pmcid: 7192604
doi: 10.1093/nar/gkaa162
Liang M, Foster CE, Yuan YW. Lost in translation: molecular basis of reduced flower coloration in a self-pollinated monkeyflower (Mimulus) species. Sci Adv. 2022;8(37):eabo1113.
pubmed: 36103532
pmcid: 9473569
doi: 10.1126/sciadv.abo1113
Latchman DS. Transcription factors: an overview. Int J Biochem Cell Biol. 1997;29(12):1305–12.
pubmed: 9570129
doi: 10.1016/S1357-2725(97)00085-X
Boija A, Klein IA, Sabari BR, Dall’Agnese A, Coffey EL, Zamudio AV, et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell. 2018;175(7):1842–e185516.
pubmed: 30449618
doi: 10.1016/j.cell.2018.10.042
Gertz J, Savic D, Varley KE, Partridge EC, Safi A, Jain P, et al. Distinct properties of Cell-Type-Specific and Shared transcription factor binding sites. Mol Cell. 2013;52(1):25–36.
pubmed: 24076218
doi: 10.1016/j.molcel.2013.08.037
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118.
pubmed: 33353982
doi: 10.1038/s41580-020-00315-9
Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol. 2001;4(5):447–56.
pubmed: 11597504
doi: 10.1016/S1369-5266(00)00199-0
Pireyre M, Burow M. Regulation of MYB and bHLH transcription factors: a glance at the protein level. Mol Plant. 2015;8(3):378–88.
pubmed: 25667003
doi: 10.1016/j.molp.2014.11.022
Lang X, Li N, Li L, Zhang S. Integrated Metabolome and Transcriptome Analysis uncovers the role of anthocyanin metabolism in Michelia maudiae. Int J Genomics. 2019;2019:e4393905.
doi: 10.1155/2019/4393905
Sun X, He L, Guo Z, Xiao Z, Su J, Liu X, et al. Comparative transcriptome analyses reveal genes related to pigmentation in the petals of a flower color variation cultivar of Rhododendron Obtusum. Mol Biol Rep. 2022;49(4):2641–53.
pubmed: 35059966
doi: 10.1007/s11033-021-07070-w
Zhang H, Tian H, Chen M, Xiong J, Cai H, Liu Y. Transcriptome analysis reveals potential genes involved in flower pigmentation in a red-flowered mutant of white clover (Trifolium repens L). Genomics. 2018;110(3):191–200.
pubmed: 28966045
doi: 10.1016/j.ygeno.2017.09.011
Zhang J, Sui C, Wang Y, Liu S, Liu H, Zhang Z, et al. Transcriptome-wide analysis reveals key DEGs in Flower Color Regulation of Hosta plantaginea (Lam.) Aschers. Genes. 2020;11(1):31.
doi: 10.3390/genes11010031
Leinonen R, Sugawara H, Shumway M, on behalf of the International Nucleotide Sequence Database Collaboration. The sequence read Archive. Nucleic Acids Res. 2011;39(1):19–21.
doi: 10.1093/nar/gkq1019
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Pucker B. Collection of color differences between plant species [Internet]. 2023. https://github.com/bpucker/codi .
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
pubmed: 21572440
pmcid: 3571712
doi: 10.1038/nbt.1883
Pucker B, Holtgräwe D, Rosleff Sörensen T, Stracke R, Viehöver P, Weisshaar B. A De Novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz–1 Displays Presence/Absence Variation and Strong Synteny. Vandepoele K, editor. PLOS ONE. 2016;11(10).
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7.
pubmed: 27043002
doi: 10.1038/nbt.3519
R Core Team. (2022). R: A language and environment for statistical computing. [Internet]. Vienna, Austria: R Foundation for Statistical Computing; https://www.R-project.org/ .
Wickman H. ggplot2: Elegant Graphics for Data Analysis [Internet]. Springer-Verlag New York; 2016. https://ggplot2.tidyverse.org .
Haak M, Vinke S, Keller W, Droste J, Rückert C, Kalinowski J et al. High Quality De Novo Transcriptome Assembly of Croton tiglium. Front Mol Biosci. 2018;5.
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.
pubmed: 23845962
doi: 10.1038/nprot.2013.084
Wheeler DL. Database resources of the National Center for Biotechnology. Nucleic Acids Res. 2003;31(1):28–33.
pubmed: 12519941
pmcid: 165480
doi: 10.1093/nar/gkg033
Min XJ, Butler G, Storms R, Tsang A. OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res. 2005;33(2):677–80.
doi: 10.1093/nar/gki394
Pucker B, Reiher F, Schilbert HM. Automatic identification of players in the Flavonoid biosynthesis with application on the Biomedicinal Plant Croton tiglium. Plants. 2020;9(9):1103.
pubmed: 32867203
pmcid: 7570183
doi: 10.3390/plants9091103
Rempel A, Choudhary N, Pucker B. KIPEs3: automatic annotation of biosynthesis pathways. Jul: Bioinformatics; 2022.
Pucker B. Automatic identification and annotation of MYB gene family members in plants. BMC Genomics. 2022;23(1):220.
pubmed: 35305581
pmcid: 8933966
doi: 10.1186/s12864-022-08452-5
Pucker B, Iorizzo M. Apiaceae FNS I originated from F3H through tandem gene duplication. PLoS ONE. 2023;18(1):e0280155.
pubmed: 36656808
pmcid: 9851555
doi: 10.1371/journal.pone.0280155
Price MN, Dehal PS, Arkin AP. FastTree: Computing large minimum evolution trees with profiles instead of a Distance Matrix. Mol Biol Evol. 2009;26(7):1641–50.
pubmed: 19377059
pmcid: 2693737
doi: 10.1093/molbev/msp077
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74.
pubmed: 25371430
doi: 10.1093/molbev/msu300
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.
pubmed: 24451623
pmcid: 3998144
doi: 10.1093/bioinformatics/btu033
Li HT, Luo Y, Gan L, Ma PF, Gao LM, Yang JB, et al. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biol. 2021;19(1):232.
pubmed: 34711223
pmcid: 8555322
doi: 10.1186/s12915-021-01166-2
Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–6.
pubmed: 33885785
pmcid: 8265157
doi: 10.1093/nar/gkab301
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9.
pubmed: 27207943
doi: 10.1093/bioinformatics/btw313
Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30(19):2811–2.
Wickman H, Francois R, Henry L, Müller K, Vaughan D. dplyr: A Grammar of Data Manipulation [Internet]. 2022. https://CRAN.R-project.org/package=dplyr .