Harnessing intestinal tryptophan catabolism to relieve atherosclerosis in mice.
Animals
Tryptophan
/ metabolism
Indoleamine-Pyrrole 2,3,-Dioxygenase
/ metabolism
Atherosclerosis
/ metabolism
Diet, High-Fat
/ adverse effects
Mice
Serotonin
/ metabolism
Intestinal Mucosa
/ metabolism
Mice, Inbred C57BL
Kynurenine
/ metabolism
Male
Gastrointestinal Microbiome
Indoles
/ pharmacology
Inflammation
/ metabolism
Mice, Knockout
Intestines
/ pathology
T-Lymphocytes
/ metabolism
Disease Models, Animal
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
29 Jul 2024
29 Jul 2024
Historique:
received:
04
08
2023
accepted:
22
07
2024
medline:
31
7
2024
pubmed:
31
7
2024
entrez:
30
7
2024
Statut:
epublish
Résumé
Tryptophan (Trp) is an essential amino acid, whose metabolism is a key gatekeeper of intestinal homeostasis. Yet, its systemic effects, particularly on atherosclerosis, remain unknown. Here we show that high-fat diet (HFD) increases the activity of intestinal indoleamine 2, 3-dioxygenase 1 (IDO), which shifts Trp metabolism from the production of microbiota-derived indole metabolites towards kynurenine production. Under HFD, the specific deletion of IDO in intestinal epithelial cells leads to intestinal inflammation, impaired intestinal barrier, augmented lesional T lymphocytes and atherosclerosis. This is associated with an increase in serotonin production and a decrease in indole metabolites, thus hijacking Trp for the serotonin pathway. Inhibition of intestinal serotonin production or supplementation with indole derivatives alleviates plaque inflammation and atherosclerosis. In summary, we uncover a pivotal role of intestinal IDO in the fine-tuning of Trp metabolism with systemic effects on atherosclerosis, paving the way for new therapeutic strategies to relieve gut-associated inflammatory diseases.
Identifiants
pubmed: 39080345
doi: 10.1038/s41467-024-50807-x
pii: 10.1038/s41467-024-50807-x
doi:
Substances chimiques
Tryptophan
8DUH1N11BX
Indoleamine-Pyrrole 2,3,-Dioxygenase
0
Serotonin
333DO1RDJY
Kynurenine
343-65-7
Indoles
0
IDO1 protein, mouse
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6390Subventions
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-22CE14-0014-01
Informations de copyright
© 2024. The Author(s).
Références
Cainzos-Achirica, M. et al. Inflammatory Bowel Disease and Atherosclerotic Cardiovascular Disease: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 76, 2895–2905 (2020).
pubmed: 33303079
doi: 10.1016/j.jacc.2020.10.027
Witkowski, M., Weeks, T. L. & Hazen, S. L. Gut Microbiota and Cardiovascular Disease. Circ. Res 127, 553–570 (2020).
pubmed: 32762536
pmcid: 7416843
doi: 10.1161/CIRCRESAHA.120.316242
Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).
pubmed: 23973224
doi: 10.1016/j.immuni.2013.08.003
Gao, J. et al. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front. Cell. Infect. Microbiol. 8, 13 (2018).
pubmed: 29468141
pmcid: 5808205
doi: 10.3389/fcimb.2018.00013
Agus, A., Planchais, J. & Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 23, 716–724 (2018).
pubmed: 29902437
doi: 10.1016/j.chom.2018.05.003
Hashimoto, T. et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487, 477–481 (2012).
pubmed: 22837003
pmcid: 7095315
doi: 10.1038/nature11228
Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med 22, 598–605 (2016).
pubmed: 27158904
pmcid: 5087285
doi: 10.1038/nm.4102
Michaudel, C. et al. Rewiring the altered tryptophan metabolism as a novel therapeutic strategy in inflammatory bowel diseases. Gut 72, 1296–1307 (2023).
pubmed: 36270778
doi: 10.1136/gutjnl-2022-327337
Taleb, S. Tryptophan Dietary Impacts Gut Barrier and Metabolic Diseases. Front. Immunol. 10, 2113 (2019).
pubmed: 31552046
pmcid: 6746884
doi: 10.3389/fimmu.2019.02113
Cole, J. E. et al. Indoleamine 2,3-dioxygenase-1 is protective in atherosclerosis and its metabolites provide new opportunities for drug development. Proc. Natl Acad. Sci. USA 112, 13033–13038 (2015).
pubmed: 26438837
pmcid: 4620898
doi: 10.1073/pnas.1517820112
Polyzos, K. A. et al. Inhibition of indoleamine 2,3-dioxygenase promotes vascular inflammation and increases atherosclerosis in Apoe−/− mice. Cardiovasc Res 106, 295–302 (2015).
pubmed: 25750192
doi: 10.1093/cvr/cvv100
Metghalchi, S. et al. Indoleamine 2,3-Dioxygenase Fine-Tunes Immune Homeostasis in Atherosclerosis and Colitis through Repression of Interleukin-10 Production. Cell Metab. 22, 460–471 (2015).
pubmed: 26235422
doi: 10.1016/j.cmet.2015.07.004
Laurans, L. et al. Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat. Med 24, 1113–1120 (2018).
pubmed: 29942089
doi: 10.1038/s41591-018-0060-4
Natividad, J. M. et al. Impaired Aryl Hydrocarbon Receptor Ligand Production by the Gut Microbiota Is a Key Factor in Metabolic Syndrome. Cell Metab. 28, 737–749.e734 (2018).
pubmed: 30057068
doi: 10.1016/j.cmet.2018.07.001
Schroeder, B. O. & Backhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med 22, 1079–1089 (2016).
pubmed: 27711063
doi: 10.1038/nm.4185
Martin-Gallausiaux, C. et al. Butyrate Produced by Commensal Bacteria Down-Regulates Indolamine 2,3-Dioxygenase 1 (IDO-1) Expression via a Dual Mechanism in Human Intestinal Epithelial Cells. Front. Immunol. 9, 2838 (2018).
pubmed: 30619249
pmcid: 6297836
doi: 10.3389/fimmu.2018.02838
Murphy, E. F. et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59, 1635–1642 (2010).
pubmed: 20926643
doi: 10.1136/gut.2010.215665
Morrison, K. E., Jasarevic, E., Howard, C. D. & Bale, T. L. It’s the fiber, not the fat: significant effects of dietary challenge on the gut microbiome. Microbiome 8, 15 (2020).
pubmed: 32046785
pmcid: 7014620
doi: 10.1186/s40168-020-0791-6
Deschênes, J., Bourdeau, V., White, J. H. & Mader, S. Regulation of GREB1 transcription by estrogen receptor alpha through a multipartite enhancer spread over 20 kb of upstream flanking sequences. J. Biol. Chem. 282, 17335–17339 (2007).
pubmed: 17463000
doi: 10.1074/jbc.C700030200
Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).
pubmed: 17456850
doi: 10.2337/db06-1491
Chassaing, B. et al. Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation. PLoS One 7, e44328 (2012).
pubmed: 22957064
pmcid: 3434182
doi: 10.1371/journal.pone.0044328
Tran, H. Q., Ley, R. E., Gewirtz, A. T. & Chassaing, B. Flagellin-elicited adaptive immunity suppresses flagellated microbiota and vaccinates against chronic inflammatory diseases. Nat. Commun. 10, 5650 (2019).
pubmed: 31827095
pmcid: 6906489
doi: 10.1038/s41467-019-13538-y
Taleb, S. Inflammation in atherosclerosis. Arch. Cardiovasc Dis. 109, 708–715 (2016).
pubmed: 27595467
doi: 10.1016/j.acvd.2016.04.002
Mauler, M. et al. Platelet Serotonin Aggravates Myocardial Ischemia/Reperfusion Injury via Neutrophil Degranulation. Circulation 139, 918–931 (2019).
pubmed: 30586717
pmcid: 6370531
doi: 10.1161/CIRCULATIONAHA.118.033942
Ghia, J. E. et al. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 137, 1649–1660 (2009).
pubmed: 19706294
doi: 10.1053/j.gastro.2009.08.041
Walther, D. J. et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299, 76 (2003).
pubmed: 12511643
doi: 10.1126/science.1078197
Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).
pubmed: 24679531
pmcid: 4056765
doi: 10.1016/j.cell.2014.03.011
Murphy, E. A., Velazquez, K. T. & Herbert, K. M. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr. Opin. Clin. Nutr. Metab. care 18, 515–520 (2015).
pubmed: 26154278
pmcid: 4578152
doi: 10.1097/MCO.0000000000000209
Villette, R. et al. Unraveling Host-Gut Microbiota Dialogue and Its Impact on Cholesterol Levels. Front. Pharmacol. 11, 278 (2020).
pubmed: 32308619
pmcid: 7145900
doi: 10.3389/fphar.2020.00278
Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).
pubmed: 30120222
pmcid: 6098093
doi: 10.1038/s41467-018-05470-4
Ball, H. J., Jusof, F. F., Bakmiwewa, S. M., Hunt, N. H. & Yuasa, H. J. Tryptophan-catabolizing enzymes - party of three. Front. Immunol. 5, 485 (2014).
pubmed: 25346733
pmcid: 4191572
doi: 10.3389/fimmu.2014.00485
Dai, X. & Zhu, B. T. Indoleamine 2,3-dioxygenase tissue distribution and cellular localization in mice: implications for its biological functions. J. Histochem Cytochem 58, 17–28 (2010).
pubmed: 19741271
pmcid: 2796611
doi: 10.1369/jhc.2009.953604
Chon, S. Y., Hassanain, H. H. & Gupta, S. L. Cooperative role of interferon regulatory factor 1 and p91 (STAT1) response elements in interferon-gamma-inducible expression of human indoleamine 2,3-dioxygenase gene. J. Biol. Chem. 271, 17247–17252 (1996).
pubmed: 8663541
doi: 10.1074/jbc.271.29.17247
Gheorghe, C. E. et al. Focus on the essentials: tryptophan metabolism and the microbiome-gut-brain axis. Curr. Opin. Pharm. 48, 137–145 (2019).
doi: 10.1016/j.coph.2019.08.004
Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4, 762–774 (2004).
pubmed: 15459668
doi: 10.1038/nri1457
Mellor, A. L., Lemos, H. & Huang, L. Indoleamine 2,3-Dioxygenase and Tolerance: Where Are We Now? Front. Immunol. 8, 1360 (2017).
pubmed: 29163470
pmcid: 5663846
doi: 10.3389/fimmu.2017.01360
Wang, Y. et al. Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat. Med 16, 279–285 (2010).
pubmed: 20190767
pmcid: 3556275
doi: 10.1038/nm.2092
Wang, Q. et al. Tryptophan-Derived 3-Hydroxyanthranilic Acid Contributes to Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Mice In Vivo. Circulation 136, 2271–2283 (2017).
pubmed: 28978552
pmcid: 5716872
doi: 10.1161/CIRCULATIONAHA.117.030972
Metghalchi, S. et al. Indoleamine 2 3-dioxygenase knockout limits angiotensin II-induced aneurysm in low density lipoprotein receptor-deficient mice fed with high fat diet. PLoS One 13, e0193737 (2018).
pubmed: 29494675
pmcid: 5833272
doi: 10.1371/journal.pone.0193737
Melhem, N. J. et al. Endothelial Cell Indoleamine 2, 3-Dioxygenase 1 Alters Cardiac Function After Myocardial Infarction Through Kynurenine. Circulation 143, 566–580 (2021).
pubmed: 33272024
doi: 10.1161/CIRCULATIONAHA.120.050301
Acovic, A. et al. Role of indoleamine 2,3-dioxygenase in pathology of the gastrointestinal tract. Therap. Adv. Gastroenterol. 11, 1756284818815334 (2018).
pubmed: 30574192
pmcid: 6295700
doi: 10.1177/1756284818815334
Noonepalle, S. K. et al. Promoter Methylation Modulates Indoleamine 2,3-Dioxygenase 1 Induction by Activated T Cells in Human Breast Cancers. Cancer Immunol. Res 5, 330–344 (2017).
pubmed: 28264810
pmcid: 5493476
doi: 10.1158/2326-6066.CIR-16-0182
Agus, A., Clément, K. & Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 70, 1174–1182 (2021).
pubmed: 33272977
doi: 10.1136/gutjnl-2020-323071
Schiering, C. et al. Feedback control of AHR signalling regulates intestinal immunity. Nature 542, 242–245 (2017).
pubmed: 28146477
pmcid: 5302159
doi: 10.1038/nature21080
Xue, H. et al. Gut Microbially Produced Indole-3-Propionic Acid Inhibits Atherosclerosis by Promoting Reverse Cholesterol Transport and Its Deficiency Is Causally Related to Atherosclerotic Cardiovascular Disease. Circ. Res 131, 404–420 (2022).
pubmed: 35893593
doi: 10.1161/CIRCRESAHA.122.321253
Bader, M. Inhibition of serotonin synthesis: A novel therapeutic paradigm. Pharm. Ther. 205, 107423 (2020).
doi: 10.1016/j.pharmthera.2019.107423
Sonnenberg, G. F. & Artis, D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity 37, 601–610 (2012).
pubmed: 23084357
pmcid: 3495160
doi: 10.1016/j.immuni.2012.10.003
Berglund, E. D. et al. Glucose metabolism in vivo in four commonly used inbred mouse strains. Diabetes 57, 1790–1799 (2008).
pubmed: 18398139
pmcid: 2453626
doi: 10.2337/db07-1615
Barnich, N. et al. Beneficial Effects of Natural Mineral Waters on Intestinal Inflammation and the Mucosa-Associated Microbiota. Int. J. Mol. Sci. 22 https://doi.org/10.3390/ijms22094336 (2021).
Johansson, M. E. & Hansson, G. C. Preservation of mucus in histological sections, immunostaining of mucins in fixed tissue, and localization of bacteria with FISH. Methods Mol. Biol. 842, 229–235 (2012).
pubmed: 22259139
doi: 10.1007/978-1-61779-513-8_13
Taleb, S. et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J. Exp. Med 206, 2067–2077 (2009).
pubmed: 19737863
pmcid: 2757872
doi: 10.1084/jem.20090545
Mallat, Z. et al. Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 108, 1232–1237 (2003).
pubmed: 12912803
doi: 10.1161/01.CIR.0000089083.61317.A1
Ferchaud-Roucher, V., Pouteau, E., Piloquet, H., Zair, Y. & Krempf, M. Colonic fermentation from lactulose inhibits lipolysis in overweight subjects. Am. J. Physiol. Endocrinol. Metab. 289, E716–E720 (2005).
pubmed: 16150956
doi: 10.1152/ajpendo.00430.2004
Maneglier, B. et al. Simultaneous measurement of kynurenine and tryptophan in human plasma and supernatants of cultured human cells by HPLC with coulometric detection. Clin. Chem. 50, 2166–2168 (2004).
pubmed: 15502089
doi: 10.1373/clinchem.2004.037465
Sellick, C. A. et al. Evaluation of extraction processes for intracellular metabolite profiling of mammalian cells: matching extraction approaches to cell type and metabolite targets. Metabolomics 6, 427–438 (2010).
doi: 10.1007/s11306-010-0216-9
Kim, E., Tran, M., Sun, Y. & Huh, J. R. Isolation and analyses of lamina propria lymphocytes from mouse intestines. STAR Protoc. 3, 101366 (2022).
pubmed: 35573483
pmcid: 9097554
doi: 10.1016/j.xpro.2022.101366
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
pubmed: 31341288
pmcid: 7015180
doi: 10.1038/s41587-019-0209-9
Callahan, B., Proctor, D., Relman, D., Fukuyama, J. & Holmes, S. Reproducible Research Workflow in R for the Analysis of Personalized Human Microbiome Data. Pac. Symp. Biocomput. Pac. Symp. Biocomput. 21, 183–194 (2016).
pubmed: 26776185
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590–D596 (2013).
pubmed: 23193283
doi: 10.1093/nar/gks1219
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).
pubmed: 23630581
pmcid: 3632530
doi: 10.1371/journal.pone.0061217
Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests. R package version 0.7. 0, https://rpkgs.datanovia.com/rstatix/ (2021).
Wickham H. Reshaping data with the reshape package. J. Stat. Soft 21. http://www.jstatsoft.org/v21/i12/paper (2007).
Oksanen, J. vegan: Community Ecology Package. R Package Version 2.4-5 (2017).