Improving the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one in Mycolicibacterium smegmatis.


Journal

Microbial biotechnology
ISSN: 1751-7915
Titre abrégé: Microb Biotechnol
Pays: United States
ID NLM: 101316335

Informations de publication

Date de publication:
Aug 2024
Historique:
received: 06 06 2024
accepted: 29 07 2024
medline: 20 8 2024
pubmed: 20 8 2024
entrez: 19 8 2024
Statut: ppublish

Résumé

The 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) is a C22 steroid synthon of pharmaceutical interest that can be produced as a lateral end-product of the catabolism of natural sterols (e.g., cholesterol or phytosterols). This work studies the role of an aldehyde dehydrogenase coded by the MSMEG_6563 gene of Mycolicibacterium smegmatis, named msRed, in 4-HBC production. This gene is located contiguously to the MSMEG_6561 encoding the aldolase msSal which catalyses the retroaldol elimination of acetyl-CoA of the metabolite intermediate 22-hydroxy-3-oxo-cholest-4-ene-24-carboxyl-CoA to deliver 3-oxo-4-pregnene-20-carboxyl aldehyde (3-OPA). We have demonstrated that msRed reduces 3-OPA to 4-HBC. Moreover, the role of msOpccR reductase encoded by MSMEG_1623 was also explored confirming that it also performs the reduction of 3-OPA into 4-HBC, but less efficiently than msRed. To obtain a M. smegmatis 4-HBC producer strain we deleted MSMEG_5903 (hsd4A) gene in strain MS6039-5941 (ΔkshB1, ΔkstD1) that produces 4-androstene-3,17-dione (AD) from natural sterols (cholesterol or phytosterols). The triple MS6039-5941-5903 mutant was able to produce 9 g/L of 4-HBC from 14 g/L of phytosterols in 2 L bioreactor, showing a productivity of 0.140 g/L h

Identifiants

pubmed: 39160452
doi: 10.1111/1751-7915.14551
doi:

Substances chimiques

Aldehyde Oxidoreductases EC 1.2.-
Cholestenones 0
aldehyde dehydrogenase (NAD(P)+) EC 1.2.1.5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e14551

Subventions

Organisme : Ministerio de Economía y Competitividad
ID : PID2019-110612RB-I00
Organisme : Comunidad de Madrid
ID : S2018/BAA-4532

Informations de copyright

© 2024 The Author(s). Microbial Biotechnology published by John Wiley & Sons Ltd.

Références

Aggett, R., Mallette, E., Gilbert, S.E., Vachon, M.A., Schroeter, K.L., Kimber, M.S. et al. (2019) The steroid side‐chain‐cleaving aldolase Ltp2‐ChsH2DUF35 is a thiolase superfamily member with a radically repurposed active site. The Journal of Biological Chemistry, 294, 11934–11943. Available from: https://doi.org/10.1074/jbc.RA119.00888
Capyk, J.K., Kalscheuer, R., Stewart, G.R., Liu, J., Kwon, H., Zhao, R. et al. (2009) Mycobacterial cytochrome p450 125 (cyp125) catalyzes the terminal hydroxylation of c27 steroids. The Journal of Biological Chemistry, 284, 35534–35542. Available from: https://doi.org/10.1074/jbc.M109.072132
Donova, M. (2018) Microbiotechnologies for steroid production. Microbiology Australia, 39, 126–129. Available from: https://doi.org/10.1071/MA18039
Donova, M. (2021) Microbial steroid production technologies: current trends and prospects. Microorganisms, 10, 53–60. Available from: https://doi.org/10.3390/microorganisms10010053
Fabre, M., Mateo, L., Lamaa, D., Baillif, S., Pagès, G., Demange, L. et al. (2022) Recent advances in age‐related macular degeneration therapies. Molecules, 27, 5089–5153. Available from: https://doi.org/10.3390/molecules27165089
Feller, F.M., Holert, J., Yücel, O. & Philipp, B. (2021) Degradation of bile acids by soil and water bacteria. Microorganisms, 9, 1759–1788. Available from: https://doi.org/10.3390/microorganisms9081759
Feng, J., Wu, Q., Zhu, D. & Ma, Y. (2022) Biotransformation enables innovations toward green synthesis of steroidal pharmaceuticals. ChemSusChem, 15, e202102399. Available from: https://doi.org/10.1002/cssc.202102399
Fernández‐Cabezón, L., Galán, B. & García, J.L. (2018) New insights on steroid biotechnology. Frontiers in Microbiology, 9, 1–15. Available from: https://doi.org/10.3389/fmicb.2018.00958
Galán, B., Uhía, I., García‐Fernández, E., Martínez, I., Bahíllo, E., de la Fuente, J.L. et al. (2017) Mycobacterium smegmatis is a suitable cell factory for the production of steroidic synthons. Microbial Biotechnology, 10, 138–150. Available from: https://doi.org/10.1111/1751‐7915.12429
García, J.L., Uhía, I. & Galán, B. (2012) Catabolism and biotechnological applications of cholesterol degrading bacteria. Microbial Biotechnology, 5, 679–699. Available from: https://doi.org/10.1111/j.1751‐7915.2012.00331.x
García‐Fernández, J., Papavinasasundaram, K., Galán, B., Sassetti, C.M. & García, J.L. (2017) Molecular and functional analysis of the mce4 operon in Mycobacterium smegmatis. Environmental Microbiology, 19, 3689–3699. Available from: https://doi.org/10.1111/1462‐2920.13869
Han, S., Liu, X., He, B., Zhai, X., Yuan, C., Li, Y. et al. (2024) Efficient production of 9, 22‐dihydroxy‐23,24‐bisnorchol‐4‐ene‐3‐one from phytosterols by modifying multiple genes in Mycobacterium fortuitum. International Journal of Molecular Sciences, 25, 3579. Available from: https://doi.org/10.3390/ijms25073579
Hernández‐Fernández, G., Acedos, M.G., García, J.L. & Galán, B. (2023) Identification of the aldolase responsible for the production of 22‐hydroxy‐23,24‐bisnorchol‐4‐ene‐3‐one from natural sterols in Mycolicibacterium smegmatis. Microbial Biotechnology, 17, e14270. Available from: https://doi.org/10.1111/1751‐7915.14270
Holert, J., Jagmann, N. & Philipp, B. (2013) The essential function of genes for a hydratase and an aldehyde dehydrogenase for growth of pseudomonas sp. strain Chol1 with the steroid compound cholate indicates an aldolytic reaction step for deacetylation of the side chain. Journal of Bacteriology, 195, 3371–3380. Available from: https://doi.org/10.1128/JB.00410‐13
Jackson, M., Reinaldo Camacho, L., Gicquel, B. & Guilhot, C. (2001) Gene replacement and transposon delivery using the negative selection marker sacB. Methods in Molecular Medicine, 54, 59–75. Available from: https://doi.org/10.1385/1‐59259‐147‐7:059
Kunjapur, A.M. & Prather, K.L.J. (2015) Microbial engineering for aldehyde synthesis. Applied and Environmental Microbiology, 81, 1892–1901. Available from: https://doi.org/10.1128/AEM.03319‐14
Kunjapur, A.M., Tarasova, Y. & Prather, K.L.J. (2014) Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli. Journal of the American Chemical Society, 136, 11644–11654. Available from: https://doi.org/10.1021/ja506664a
Leuthner, B. & Heider, J. (2000) Anaerobic toluene catabolism of Thauera aromatica: the bbs operon codes for enzymes of beta oxidation of the intermediate benzylsuccinate. Journal of Bacteriology, 182, 272–277. Available from: https://doi.org/10.1128/JB.182.2.272‐277.2000
Liu, X., He, B., Zhang, J., Yuan, C., Han, S., Du, G. et al. (2023) Phytosterol conversion into C9 non‐hydroxylated derivatives through gene regulation in Mycobacterium fortuitum. Applied Microbiology and Biotechnology, 107, 7635–7646. Available from: https://doi.org/10.1007/s00253‐023‐12812‐w
Murdoch, R.W. & Hay, A.G. (2013) Genetic and chemical characterization of ibuprofen degradation by Sphingomonas Ibu‐2. Microbiology, 159, 621–632. Available from: https://doi.org/10.1099/mic.0.062273‐0
Nesbitt, N.M., Yang, X., Fontán, P., Kolesnikova, I., Smith, I., Sampson, N.S. et al. (2010) A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infection and Immunity, 78, 275–282. Available from: https://doi.org/10.1128/IAI.00893‐09
Nunes, V.O., Vanzellotti, N., Fraga, J.L., Pessoa, F.L.P., Ferreira, T.F. & Amaral, P.F.F. (2022) Biotransformation of phytosterols into androstenedione‐a technological prospecting study. Molecules, 27, 3164. Available from: https://doi.org/10.3390/molecules27103164
Ouellet, H., Guan, S., Johnston, J.B., Chow, E.D., Kells, P.M., Burlingame, A.L. et al. (2010) Mycobacterium tuberculosis CYP125A1, a steroid C27 monooxygenase that detoxifies intracellularly generated cholest‐4‐en‐3‐one. Molecular Microbiology, 77, 730–742. Available from: https://doi.org/10.1111/j.1365‐2958.2010.07243.x
Peng, H., Wang, Y., Jiang, K., Chen, X., Zhang, W., Zhang, Y. et al. (2021) A dual role reductase from phytosterols catabolism enables the efficient production of valuable steroid precursors. Angewandte Chemie, 133, 5474–5480. Available from: https://doi.org/10.1002/ange.202015462
Schaefer, C.M., Lu, R., Nesbitt, N.M., Schiebel, J., Sampson, N.S. & Kisker, C. (2015) FadA5 a thiolase from mycobacterium tuberculosis: a steroid‐binding pocket reveals the potential for drug development against tuberculosis. Structure, 1993(23), 21–33. Available from: https://doi.org/10.1016/j.str.2014.10.010
Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T. & Jacobs, W.R. (1990) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Molecular Microbiology, 4, 1911–1919. Available from: https://doi.org/10.1111/j.1365‐2958.1990.tb02040.x
Stover, C.K., de la Cruz, V.F., Fuerst, T.R., Burlein, J.E., Benson, L.A., Bennett, L.T. et al. (1991) New use of BCG for recombinant vaccines. Nature, 351, 456–460. Available from: https://doi.org/10.1038/351456a0
Uhía, I., Galán, B., Morales, V. & García, J.L. (2011) Initial step in the catabolism of cholesterol by Mycobacterium smegmatis mc2 155. Environmental Microbiology, 13, 943–959. Available from: https://doi.org/10.1111/j.1462‐2920.2010.02398.x
Wang, X.‐X., Ke, X., Liu, Z.‐Q. & Zheng, Y.‐G. (2022) Rational development of mycobacteria cell factory for advancing the steroid biomanufacturing. World Journal of Microbiology and Biotechnology, 38, 191–207. Available from: https://doi.org/10.1007/s11274‐022‐03369‐3
Wang, Z., Qiu, H., Chen, Y., Chen, X., Fu, C. & Yu, L. (2024) Microbial metabolism of diosgenin by a novel isolated Mycolicibacterium sp. HK‐90: a promising biosynthetic platform to produce 19‐carbon and 21‐carbon steroids. Microbial Biotechnology, 17, e14415. Available from: https://doi.org/10.1111/1751‐7915.14415
Wipperman, M.F., Sampson, N.S. & Thomas, S.T. (2014) Pathogen roid rage: cholesterol utilization by Mycobacterium tuberculosis. Critical Reviews in Biochemistry and Molecular Biology, 49, 269–293. Available from: https://doi.org/10.3109/10409238.2014.895700
Xiong, L.‐B., Liu, H.‐H., Xu, L.‐Q., Sun, W.‐J., Wang, F.‐Q. & Wei, D.‐Z. (2017) Improving the production of 22‐hydroxy‐23,24‐bisnorchol‐4‐ene‐3‐one from sterols in Mycobacterium neoaurum by increasing cell permeability and modifying multiple genes. Microbial Cell Factories, 16, 89–99. Available from: https://doi.org/10.1186/s12934‐017‐0705‐x
Xu, L.‐Q., Liu, Y.‐J., Yao, K., Liu, H.‐H., Tao, X.‐Y., Wang, F.‐Q. et al. (2016) Unraveling and engineering the production of 23,24‐bisnorcholenic steroids in sterol metabolism. Scientific Reports, 6, 21928–21931. Available from: https://doi.org/10.1038/srep21928
Yang, B., Zhao, T., Liu, Y. & Lu, B. (2023) Guidelines for extraction and quantitative analysis of phytosterols and oxidation products. eFood, 4, e108. Available from: https://doi.org/10.1002/efd2.108
Yücel, O., Borgert, S.R., Poehlein, A., Niermann, K. & Philipp, B. (2019) The 7α‐hydroxysteroid dehydratase Hsh2 is essential for anaerobic degradation of the steroid skeleton of 7α‐hydroxyl bile salts in the novel denitrifying bacterium Azoarcus sp. strain Aa7. Environmental Microbiology, 21, 800–813. Available from: https://doi.org/10.1111/1462‐2920.14508
Zaldivar, J., Martinez, A. & Ingram, L.O. (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnology and Bioengineering, 65, 24–33.
Zhao, A., Zhang, X., Li, Y., Wang, Z., Lv, Y., Liu, J. et al. (2021) Mycolicibacterium cell factory for the production of steroid‐based drug intermediates. Biotechnology Advances, 53, 107860–107889. Available from: https://doi.org/10.1016/j.biotechadv.2021.107860
Zhao, Y.‐Q., Liu, Y.‐J., Song, L., Yu, D., Liu, K., Liu, K. et al. (2023) Unravelling and engineering an operon involved in the side‐chain degradation of sterols in Mycolicibacterium neoaurum for the production of steroid synthons. Biotechnology for Biofuels and Bioproducts, 16, 121–138. Available from: https://doi.org/10.1186/s13068‐023‐02376‐2

Auteurs

Gabriel Hernández-Fernández (G)

Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.

Miguel G Acedos (MG)

Advanced Biofuels and Bioproducts Unit, Department of Energy, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.

Isabel de la Torre (I)

Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.

Juan Ibero (J)

Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.

José L García (JL)

Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.

Beatriz Galán (B)

Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.

Articles similaires

Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase

Metabolic engineering of

Jae Sung Cho, Zi Wei Luo, Cheon Woo Moon et al.
1.00
Corynebacterium glutamicum Metabolic Engineering Dicarboxylic Acids Pyridines Pyrones
Corynebacterium glutamicum Tyramine Metabolic Engineering Phylogeny Fermentation
Lignin Cupriavidus necator Metabolic Engineering Gene Expression Regulation, Bacterial Hydroxybenzoates

Classifications MeSH