Fertile grounds: exploring male sterility in cotton and its marker development.
CGMS
CMS
FM
GMS
Upland cotton
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
05 Sep 2024
05 Sep 2024
Historique:
received:
19
06
2024
accepted:
27
08
2024
medline:
5
9
2024
pubmed:
5
9
2024
entrez:
5
9
2024
Statut:
epublish
Résumé
The high cost of producing conventional hybrid cotton seeds led to more research efforts on cotton male sterility systems. There is a lack of studies on cytology, histology, morphological variation, yield, and altered restorer backgrounds to identify and develop male sterility markers in cotton hybrids. Hybrid cotton can be efficiently produced by exploiting genetic male sterility. Among the 19 Genetic Male Sterility (GMS) genes discovered, the lines with ms5ms6 genes are mostly utilised to establish successful hybrid cotton in India. Molecular markers closely associated with the MS alleles are identified to facilitate the efficient and rapid backcrossing of male-sterility genes into elite lines or cultivars by marker-assisted backcrossing. The majority of the markers which are random DNA markers (RDMs), are probably lost, when recombination occurs. In contradiction, molecular markers (functional markers, or FMs) within the genic region can be identified and employed in crops for diverse traits, if prospective characteristic genes are known. In this review, the mechanism of male sterility, its gene expression level, and the need for functional markers for the male sterility trait in cotton have been put forward.
Identifiants
pubmed: 39235637
doi: 10.1007/s11033-024-09893-9
pii: 10.1007/s11033-024-09893-9
doi:
Substances chimiques
Genetic Markers
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
961Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Liu D et al (2015) Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L). Mol Genet Genomics 290:1683–1700
pubmed: 25796191
doi: 10.1007/s00438-015-1027-5
Saeidnia F, Hamid R (2023) Heterosis in cotton: challenges and opportunities of hybrid cultivars production. Iran J Cotton Researches 11(1):77–96
Zhang D, Luo X, Zhu L (2011) Cytological analysis and genetic control of rice anther development. J Genet Genomics 38(9):379–390
pubmed: 21930097
doi: 10.1016/j.jgg.2011.08.001
Fan Y et al (2016) PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice, Proceedings of the National Academy of Sciences, vol. 113, no. 52, pp. 15144–15149
Li J, Nadeem M, Sun G, Wang X, Qiu L (2019) Male sterility in soybean: occurrence, molecular basis and utilization. Plant Breeding 138(6):659–676
doi: 10.1111/pbr.12751
Liu J et al (2022) Wheat male-sterile 2 reduces ROS levels to inhibit anther development by deactivating ROS modulator 1. Mol Plant 15(9):1428–1439
pubmed: 35864748
doi: 10.1016/j.molp.2022.07.010
Nie H, Cheng C, Kong J, Hua J (2023) Plant non-coding RNAs function in pollen development and male sterility. Front Plant Sci 14:1109941
pubmed: 36875603
pmcid: 9975556
doi: 10.3389/fpls.2023.1109941
Justus N, Leinwebr C (1960) A heritable partially male-sterile character in cotton
Bowman DT, Weaver JB (1979) Analyses of a Dominant Male-Sterile Character in Upland Cotton. II. Genetic Studies
Chen D, Ding Y, Guo W, Zhang T (2009) Molecular mapping of genic male-sterile genes ms15, ms5 and ms6 in tetraploid cotton, Plant Breeding, vol. 128, no. 2, pp. 193–198
Justus N, Meyer JR, Roux JB (1963) A partially male-sterile character in upland cotton
Richmond T, Kohel R (1961) Analysis of a completely male-sterile character in American upland cotton
Basu A (1996) Current genetic research in cotton in India. Genetica 97(3):279–290
doi: 10.1007/BF00055314
Chen L, Liu Y-G (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65:579–606
pubmed: 24313845
doi: 10.1146/annurev-arplant-050213-040119
Xue Z et al (2018) Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nat Commun 9(1):604
pubmed: 29426861
doi: 10.1038/s41467-018-03048-8
Bohra A et al (2017) Novel CMS lines in pigeonpea [Cajanus cajan (L.) Millspaugh] derived from cytoplasmic substitutions, and their effective restoration and deployment in hybrid breeding. Crop J 5(1):89–94
doi: 10.1016/j.cj.2016.10.003
Abbas A et al (2021) Exploiting genic male sterility in rice: from molecular dissection to breeding applications. Front Plant Sci 12:629314
pubmed: 33763090
doi: 10.3389/fpls.2021.629314
Singh SB, Hebbar J, John S (2002) Registration of Genetic male sterile line of cotton. Indian J Plant Genetic Resour 15(3):302–303
Fu D et al (2014) Utilization of crop heterosis: a review. Euphytica 197:161–173
doi: 10.1007/s10681-014-1103-7
Chauhan S, Gupta H (2005) Detergent-induced male sterility in chickpea (Cicer arietinum L). INDIAN J Genet PLANT Breed 65(03):215–216
Feng PC et al (2014) Improving hybrid seed production in corn with glyphosate-mediated male sterility. Pest Manag Sci 70(2):212–218
pubmed: 23460547
doi: 10.1002/ps.3526
Mei L et al (2019) Characterizations of male sterility in a glyphosate-tolerant upland cotton (Gossypium hirsutum L.) induced by glyphosate and its assessments on safety utilization. Ind Crops Prod 134:318–327
doi: 10.1016/j.indcrop.2019.03.072
Yasuor H, Riov J, Rubin B (2007) Glyphosate-induced male sterility in glyphosate-resistant cotton (Gossypium hirsutum L.) is associated with inhibition of anther dehiscence and reduced pollen viability. Crop Prot 26(3):363–369
doi: 10.1016/j.cropro.2005.06.015
Ray K, Bisht NC, Pental D, Burma PK (2007) Development of barnase/barstar transgenics for hybrid seed production in Indian oilseed mustard (Brassica juncea L. Czern & Coss) using a mutant acetolactate synthase gene conferring resistance to imidazolinone-based herbicide’pursuit’. Curr Sci, pp. 1390–1396
Kaul ML, Kaul ML (1988) Gene-cytoplasmic male sterility, Male sterility in higher plants, pp. 97–192
Feng X et al (2015) Development of molecular markers for genetic male sterility in Gossypium hirsutum. Mol Breeding 35:1–9
doi: 10.1007/s11032-015-0336-z
Tuteja O, Verma S, Singh M (2008) Effect of G. Harknessii based cytoplasmic male sterility on seed cotton yield and fibre quality traits in upland cotton (Gossypium hirsutum L). Indian J Genet Plant Breed 68(03):288–295
Morales KY, Bridgeland AH, Hake KD, Udall JA, Thomson MJ, Yu JZ (2022) Homology-based identification of candidate genes for male sterility editing in upland cotton (Gossypium hirsutum L). Front Plant Sci 13:1006264
pubmed: 36589117
doi: 10.3389/fpls.2022.1006264
Cheng X-Q et al (2020) Characterization and transcriptome analysis of a dominant genic male sterile cotton mutant. BMC Plant Biol 20:1–14
doi: 10.1186/s12870-020-02522-0
Farinati S et al (2023) Current insights and advances into plant male sterility: new precision breeding technology based on genome editing applications. Front Plant Sci 14:1223861
pubmed: 37521915
pmcid: 10382145
doi: 10.3389/fpls.2023.1223861
Okada K, Shimura Y (1994) Genetic analyses of signalling in flower development using Arabidopsis. Plant Mol Biol 26:1357–1377
pubmed: 7858195
doi: 10.1007/BF00016480
Khadi B, Kulkarni V, Katageri I, Soddi R (1998) Male sterility-New Frontiers in Cotton Breeding, presented at the Proceedings of the world cotton research conference-2, Anthens, Greece, pp. 246–249
Liu S, Li Z, Wu S, Wan X (2021) The essential roles of sugar metabolism for pollen development and male fertility in plants. Crop J 9(6):1223–1236
doi: 10.1016/j.cj.2021.08.003
Wu Y et al (2015) Defective pollen wall contributes to male sterility in the male sterile line 1355A of cotton. Sci Rep 5(1):9608
pubmed: 26043720
pmcid: 4456728
doi: 10.1038/srep09608
Liu J et al (2014) Proteomic analysis of anthers from wild-type and photosensitive genetic male sterile mutant cotton (Gossypium hirsutum L). BMC Plant Biol 14:1–16
doi: 10.1186/s12870-014-0390-4
Ma J et al (2013) Selection and characterization of a Novel photoperiod-sensitive male sterile line in Upland Cotton. J Integr Plant Biol 55(7):608–618
pubmed: 23691935
doi: 10.1111/jipb.12067
Ahmad M et al (2021) Adaptation strategies to improve the resistance of oilseed crops to heat stress under a changing climate: an overview. Front Plant Sci 12:767150
pubmed: 34975951
pmcid: 8714756
doi: 10.3389/fpls.2021.767150
Zhang R et al (2022) Rapid identification of pollen-and anther-specific genes in response to high-temperature stress based on transcriptome profiling analysis in cotton. Int J Mol Sci 23(6):3378
pubmed: 35328797
pmcid: 8954629
doi: 10.3390/ijms23063378
Khan AH et al (2020) High day and night temperatures distinctively disrupt fatty acid and jasmonic acid metabolism, inducing male sterility in cotton. J Exp Bot 71(19):6128–6141
pubmed: 32640017
doi: 10.1093/jxb/eraa319
Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61(7):1959–1968
pubmed: 20351019
doi: 10.1093/jxb/erq053
Meyer VG (1969) Some effects of genes, cytoplasm, and Environment on male sterility of cotton (Gossypium) 1. Crop Sci 9(2):237–242
doi: 10.2135/cropsci1969.0011183X000900020039x
Meyer VG, Meyer JR (1965) Cytoplasmically controlled male sterility in cotton
Meyer VG (1973) A study of reciprocal hybrids between upland cotton (Gossypium hirsutum L.) and experimental lines with cytoplasms from seven other species 1. Crop Sci 13(4):439–444
doi: 10.2135/cropsci1973.0011183X001300040015x
Meyer VG (1975) Male sterility from Gossypium harknessii
Zhang J, Stewart JM (2001) Inheritance and genetic relationships of the D8 and D2-2 restorer genes for cotton cytoplasmic male sterility. Crop Sci 41(2):289–294
doi: 10.2135/cropsci2001.412289x
Stewart J (1992) A new cytoplasmic male sterile and restorer for cotton
Yin J, Guo W, Yang L, Liu L, Zhang T (2006) Physical mapping of the Rf1 fertility-restoring gene to a 100 kb region in cotton. Theor Appl Genet 112:1318–1325
pubmed: 16544127
doi: 10.1007/s00122-006-0234-1
Wang F, Stewart JM, Zhang J (2007) Molecular markers linked to the Rf2 fertility restorer gene in cotton. Genome 50(9):818–824
pubmed: 17893722
doi: 10.1139/G07-061
Feng J et al (2021) Physical mapping and InDel marker development for the restorer gene Rf2 in cytoplasmic male sterile CMS-D8 cotton. BMC Genomics 22:1–12
doi: 10.1186/s12864-020-07342-y
Feng Y et al (2015) Multiple loci not only Rf3 involved in the restoration ability of pollen fertility, anther exertion and pollen shedding to S type cytoplasmic male sterile in maize. Theor Appl Genet 128:2341–2350
pubmed: 26220224
doi: 10.1007/s00122-015-2589-7
Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63
pubmed: 19015660
doi: 10.1038/nrg2484
Sheoran IS, Ross AR, Olson DJ, Sawhney VK (2009) Differential expression of proteins in the wild type and 7B-1 male-sterile mutant anthers of tomato (Solanum lycopersicum): a proteomic analysis. J Proteom 71(6):624–636
doi: 10.1016/j.jprot.2008.10.006
Sheoran IS, Sawhney VK (2010) Proteome analysis of the normal and Ogura (ogu) CMS anthers of Brassica napus to identify proteins associated with male sterility. Botany 88(3):217–230
doi: 10.1139/B09-085
Yue J, Ren Y, Wu S, Zhang X, Wang H, Tang C (2014) Differential proteomic studies of the genic male-sterile line and fertile line anthers of upland cotton (Gossypium hirsutum L). Genes Genomics 36:415–426
doi: 10.1007/s13258-014-0176-y
Hamid R, Tomar RS, Marashi H, Shafaroudi SM, Golakiya BA, Mohsenpour M (2018) Transcriptome profiling and cataloging differential gene expression in floral buds of fertile and sterile lines of cotton (Gossypium hirsutum L). Gene 660:80–91
pubmed: 29577977
doi: 10.1016/j.gene.2018.03.070
Cheng C et al (2023) Identification of fertility restoration candidate genes from a restorer line R186 for Gossypium Harknessii cytoplasmic male sterile cotton. BMC Plant Biol 23(1):175
pubmed: 37016285
doi: 10.1186/s12870-023-04185-z
Zhang M et al (2020) Deficiencies in the formation and regulation of anther cuticle and tryphine contribute to male sterility in cotton PGMS line. BMC Genomics 21:1–18
doi: 10.1186/s12864-020-07250-1
Liu F et al (Dec. 2019) GhFAD2–3 is required for anther development in Gossypium hirsutum. BMC Plant Biol 19(1):393. https://doi.org/10.1186/s12870-019-2010-9
Chen L et al (May 2024) GhTKPR1_8 functions to inhibit anther dehiscence and reduce pollen viability in cotton. Physiol Plant 176(3):e14331. https://doi.org/10.1111/ppl.14331
Gong J et al (2024) Gh4CL20/20A involved in flavonoid biosynthesis is essential for male fertility in cotton (Gossypium hirsutum L). Plant Physiol Biochem, p. 108484
Zhang M et al (2021) GhGPAT12/25 are essential for the formation of anther cuticle and pollen exine in cotton (Gossypium hirsutum L). Front Plant Sci 12:667739
pubmed: 34054906
doi: 10.3389/fpls.2021.667739
Dharmalingam Raja DR et al (2018) Identification of molecular markers associated with genic male sterility in tetraploid cotton (Gossypium hirsutum L.) through bulk segregant analysis using a cotton SNP 63K array., Accessed: Mar. 13, 2024. [Online]. Available: https://www.cabidigitallibrary.org/doi/full/10.5555/20193060278
Guo W, Zhang T, Pan J, Kohel RJ (1998) Identification of RAPD marker linked with fertility-restoring gene of cytoplasmic male sterile lines in upland cotton. Chin Sci Bull 43:52–54
doi: 10.1007/BF02885512
Lan T-H, Cook CG, Paterson AH (1999) Identification of a RAPD marker linked to a male fertility restoration gene in cotton (Gossypium hirsutum L). J Agric Genomics 4:1–5
Liu L, Guo W, Zhu X, Zhang T (2003) Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L. Theor Appl Genet 106:461–469
pubmed: 12589546
doi: 10.1007/s00122-002-1084-0
Zhang J, Stewart JM (2004) Identification of molecular markers linked to the fertility restorer genes for CMS-D8 in Cotton. Crop Sci 44(4):1209–1217
doi: 10.2135/cropsci2004.1209
Feng J et al (2020) Development and utilization of an InDel marker linked to the fertility restorer genes of CMS-D8 and CMS-D2 in cotton. Mol Biol Rep 47:1275–1282
pubmed: 31894465
doi: 10.1007/s11033-019-05240-5
Wu J et al (Nov. 2017) Development of InDel markers for the restorer gene Rf1 and assessment of their utility for marker-assisted selection in cotton. Euphytica 213(11):251. https://doi.org/10.1007/s10681-017-2043-9
Toppo RR, Katageri IS (2016) Molecular markers for fertility restoration in cotton CGMS system. J Farm Sci 29(3):307–309
Bharati M, Khadi B, Katageri I, Vamadevaiah H, Fakrudin B (2010) Molecular characterization of genetic male sterile genotypes in cotton (Gossypium spp). Indian J Genet Plant Breed 70(01):94–96
Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8(11):554–560
pubmed: 14607101
doi: 10.1016/j.tplants.2003.09.010
Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10(12):621–630
pubmed: 16290213
doi: 10.1016/j.tplants.2005.10.004
Salgotra RK, Gupta BB, Stewart CN (2014) From genomics to functional markers in the era of next-generation sequencing, Biotechnol Lett, vol. 36, no. 3, pp. 417–426, Mar. https://doi.org/10.1007/s10529-013-1377-1
Ingvardsen CR, Schejbel B, Lübberstedt T (2008) Functional Markers in Resistance Breeding, in Progress in Botany, vol. 69, U. Lüttge, W. Beyschlag, and J. Murata, Eds., in Progress in Botany, vol. 69., Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 61–87. https://doi.org/10.1007/978-3-540-72954-9_3
Salgotra RK, Stewart CN Jr (2020) Functional markers for precision plant breeding. Int J Mol Sci 21(13):4792
pubmed: 32640763
pmcid: 7370099
doi: 10.3390/ijms21134792
Lin Z, Wang Y, Zhang X, Zhang J (Oct. 2012) Functional markers for cellulose synthase and their comparison to SSRs in cotton. Plant Mol Biol Rep 30(5):1270–1275. https://doi.org/10.1007/s11105-012-0432-8
Pranathi K et al (2016) Comparative analysis of sequences of mitochondrial genomes of wild abortive male sterile (WA-CMS) and male fertile lines of rice, development of functional markers for WA-CMS trait and their use in assessment of genetic purity of seeds of WA-CMS lines. Mol Breeding 36:1–12
doi: 10.1007/s11032-016-0445-3
Chen C et al (2013) A co-dominant marker BoE332 applied to marker-assisted selection of homozygous male-sterile plants in cabbage (Brassica oleracea var. capitata L). J Integr Agric 12(4):596–602
doi: 10.1016/S2095-3119(13)60277-4
Abuyusuf M, Nath UK, Kim H-T, Islam MR, Park J-I, Nou I-S (2019) Molecular markers based on sequence variation in BoFLC1. C9 for characterizing early-and late-flowering cabbage genotypes. BMC Genet 20:1–11
doi: 10.1186/s12863-019-0740-1
Naresh P, Lin S, Wang Y, Kumar S (2018) Molecular markers associated to two non-allelic genic male sterility genes in peppers (Capsicum annuum L). Front Plant Sci 9:354475
doi: 10.3389/fpls.2018.01343
Kim S-C et al (2014) Development of a SCAR marker for sex identification in asparagus. Korean J Plant Resour 27(3):236–241
doi: 10.7732/kjpr.2014.27.3.236
Li J et al (2012) Map-based cloning of a recessive genic male sterility locus in Brassica napus L. and development of its functional marker. Theor Appl Genet 125:223–234
pubmed: 22382488
doi: 10.1007/s00122-012-1827-5
Andeden E et al (2011) Distribution of vernalization and photoperiod genes (Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3, Ppd-D1) in Turkish bread wheat cultivars and landraces. Cereal Res Commun 39(3):352–364
doi: 10.1556/CRC.39.2011.3.5
Dunford RP et al (2002) Comparative mapping of the barley Ppd-H1 photoperiod response gene region, which lies close to a junction between two rice linkage segments. Genetics 161(2):825–834
pubmed: 12072477
doi: 10.1093/genetics/161.2.825
Qi Y, Wang L, Gui J, Zhang L, Liu Q, Wang J (2017) Development and validation of a functional co-dominant SNP marker for the photoperiod thermo-sensitive genic male sterility pms3 (p/tms12-1) gene in rice, Breeding Science, vol. 67, no. 5, pp. 535–539
Hecht V et al (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol 137(4):1420–1434
pubmed: 15778459
doi: 10.1104/pp.104.057018