Whole-exome sequencing reveals the genetic causes and modifiers of moyamoya syndrome.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 Oct 2024
Historique:
received: 09 10 2023
accepted: 03 09 2024
medline: 5 10 2024
pubmed: 5 10 2024
entrez: 4 10 2024
Statut: epublish

Résumé

Moyamoya vasculopathy secondary to various genetic disorders is classified as moyamoya syndrome (MMS). Recent studies indicate MMS occurs due to a combination of genetic modifiers and causative mutations for the primary genetic disorders. We performed whole-exome sequencing (WES) in 13 patients with various genetic disorders who developed MMS. WES successfully revealed the genetic diagnoses of neurofibromatosis type 1 (NF-1), Down syndrome, multisystemic smooth muscle dysfunction syndrome, Noonan syndrome, and alpha thalassemia. The previously reported modifier genes, RNF213 and MRVI1, were confirmed in the NF-1 and Down syndrome cases. Further analysis revealed rare hypomorphic variants in the causative genes of the primary disorders underlying MMS, such as Alagille syndrome and Rasopathies, conferred susceptibility to MMS. Genes involved in the development of pulmonary arterial hypertension (PAH), such as ABCC8 and BMPR2, were also identified as potential modifiers. The rare variants in the MMS and PAH genes were significantly enriched in the eight Japanese patients with MMS compared with the 104 Japanese individuals from the 1000 Genomes Project. Disease genes associated with the arterial occlusive conditions represented by those of Rasopathies and PAH may provide novel diagnostic markers and future therapeutic targets for MMS as well as moyamoya disease with an unknown cause.

Identifiants

pubmed: 39367156
doi: 10.1038/s41598-024-72043-5
pii: 10.1038/s41598-024-72043-5
doi:

Substances chimiques

RNF213 protein, human EC 2.3.2.27
Ubiquitin-Protein Ligases EC 2.3.2.27
Adenosine Triphosphatases EC 3.6.1.-
BMPR2 protein, human EC 2.7.11.30
Bone Morphogenetic Protein Receptors, Type II EC 2.7.11.30

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22720

Subventions

Organisme : Japan Society for the Promotion of Science
ID : 19K09537

Informations de copyright

© 2024. The Author(s).

Références

Research Committee on the Pathology and Treatment of Spontaneous Occlusion of the Circle of Willis, Health Labour Sciences Research Grant for Research on Measures for Infractable Diseases. Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlusion of the circle of Willis). Neurol. Med. Chir. (Tokyo) 52(5), 245–266. https://doi.org/10.2176/nmc.52.245 (2012).
doi: 10.2176/nmc.52.245
Kuroda, S. et al. Diagnostic criteria for moyamoya disease—2021 revised version. Neurol. Med. Chir. (Tokyo) 62(7), 307–312. https://doi.org/10.2176/jns-nmc.2022-0072 (2022).
doi: 10.2176/jns-nmc.2022-0072 pubmed: 35613882
Fujimura, M. & Tominaga, T. Diagnosis of moyamoya disease: International standard and regional differences. Neurol. Med. Chir. (Tokyo) 55(3), 189–193. https://doi.org/10.2176/nmc.ra.2014-0307 (2015).
doi: 10.2176/nmc.ra.2014-0307 pubmed: 25739428
Moteki, Y. et al. Systematic validation of RNF213 coding variants in Japanese patients with moyamoya disease. J. Am. Heart Assoc. 4(5), e001862. https://doi.org/10.1161/JAHA.115.001862 (2015).
doi: 10.1161/JAHA.115.001862 pubmed: 25964206 pmcid: 4599414
Kim, E. H. et al. Importance of RNF213 polymorphism on clinical features and long-term outcome in moyamoya disease. J. Neurosurg. 124(5), 1221–1227. https://doi.org/10.3171/2015.4.JNS142900 (2016).
doi: 10.3171/2015.4.JNS142900 pubmed: 26430847
Zhang, Q. et al. RNF213 as the major susceptibility gene for Chinese patients with moyamoya disease and its clinical relevance. J. Neurosurg. 126(4), 1106–1113. https://doi.org/10.3171/2016.2.JNS152173 (2017).
doi: 10.3171/2016.2.JNS152173 pubmed: 27128593
Hara, S., Akagawa, H. & Nariai, T. RNF213 gene variants in moyamoya disease: Questions remain unanswered. World Neurosurg. 162, 18–20. https://doi.org/10.1016/j.wneu.2022.03.040 (2022).
doi: 10.1016/j.wneu.2022.03.040 pubmed: 35405362
Phi, J. H. et al. Association between moyamoya syndrome and the RNF213 c.14576G>A variant in patients with neurofibromatosis Type 1. J. Neurosurg. Pediatr. 17(6), 717–722. https://doi.org/10.3171/2015.10.PEDS15537 (2016).
doi: 10.3171/2015.10.PEDS15537 pubmed: 26849809
Mukawa, M. et al. Exome sequencing identified CCER2 as a novel candidate gene for moyamoya disease. J. Stroke Cerebrovasc. Dis. 26(1), 150–161. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.09.003 (2017).
doi: 10.1016/j.jstrokecerebrovasdis.2016.09.003 pubmed: 27717682
Hervé, D. et al. Loss of α1β1 soluble guanylate cyclase, the major nitric oxide receptor, leads to moyamoya and achalasia. Am. J. Hum. Genet. 94(3), 385–394. https://doi.org/10.1016/j.ajhg.2014.01.018 (2014).
doi: 10.1016/j.ajhg.2014.01.018 pubmed: 24581742 pmcid: 3951937
Geiselhöringer, A. et al. IRAG is essential for relaxation of receptor-triggered smooth muscle contraction by cGMP kinase. EMBO J. 23(21), 4222–4231. https://doi.org/10.1038/sj.emboj.7600440 (2004).
doi: 10.1038/sj.emboj.7600440 pubmed: 15483626 pmcid: 524403
Johnson, A. D. et al. Genome-wide meta-analyses identifies seven loci associated with platelet aggregation in response to agonists. Nat. Genet. 42(7), 608–613. https://doi.org/10.1038/ng.604 (2010).
doi: 10.1038/ng.604 pubmed: 20526338 pmcid: 3057573
Bajaj, A., Li, Q. F., Zheng, Q. & Pumiglia, K. Loss of NF1 expression in human endothelial cells promotes autonomous proliferation and altered vascular morphogenesis. PLoS One 7(11), e49222. https://doi.org/10.1371/journal.pone.0049222 (2012).
doi: 10.1371/journal.pone.0049222 pubmed: 23145129 pmcid: 3492274
Xu, J., Ismat, F. A., Wang, T., Yang, J. & Epstein, J. A. NF1 regulates a Ras-dependent vascular smooth muscle proliferative injury response. Circulation 116(19), 2148–2156. https://doi.org/10.1161/CIRCULATIONAHA.107.707752 (2007).
doi: 10.1161/CIRCULATIONAHA.107.707752 pubmed: 17967772
Morimoto, T. et al. Significant association of the RNF213 p.R4810K polymorphism with quasi-moyamoya disease. J. Stroke Cerebrovasc. Dis. 25(11), 2632–2636. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.07.004 (2016).
doi: 10.1016/j.jstrokecerebrovasdis.2016.07.004 pubmed: 27476341
Kanda, S. et al. Deletion in the Cobalamin Synthetase W Domain-Containing Protein 1 gene is associated with congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 31(1), 139–147. https://doi.org/10.1681/ASN.2019040398 (2020).
doi: 10.1681/ASN.2019040398 pubmed: 31862704
Maegawa, T., Akagawa, H., Onda, H. & Kasuya, H. Whole-exome sequencing in a Japanese multiplex family identifies new susceptibility genes for intracranial aneurysms. PLoS One. 17(3), e0265359. https://doi.org/10.1371/journal.pone.0265359 (2022).
doi: 10.1371/journal.pone.0265359 pubmed: 35299232 pmcid: 8929693
Wang, K., Li, M. & Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38(16), e164. https://doi.org/10.1093/nar/gkq603 (2010).
doi: 10.1093/nar/gkq603 pubmed: 20601685 pmcid: 2938201
Fromer, M. et al. Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. Am. J. Hum. Genet. 91(4), 597–607. https://doi.org/10.1016/j.ajhg.2012.08.005 (2012).
doi: 10.1016/j.ajhg.2012.08.005 pubmed: 23040492 pmcid: 3484655
Fromer, M. & Purcell, S. M. Using XHMM software to detect copy number variation in whole-exome sequencing data. Curr. Protoc. Hum. Genet. 81, 7.23.1-7.23.21. https://doi.org/10.1002/0471142905.hg0723s81 (2014).
doi: 10.1002/0471142905.hg0723s81 pubmed: 24763994
D’Aurizio, R. et al. Enhanced copy number variants detection from whole-exome sequencing data using EXCAVATOR2. Nucleic Acids Res. 44(20), e154. https://doi.org/10.1093/nar/gkw695 (2016).
doi: 10.1093/nar/gkw695 pubmed: 27507884 pmcid: 5175347
Jian, X., Boerwinkle, E. & Liu, X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 42(22), 13534–13544. https://doi.org/10.1093/nar/gku1206 (2014).
doi: 10.1093/nar/gku1206 pubmed: 25416802 pmcid: 4267638
Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176(3), 535-548.e24. https://doi.org/10.1016/j.cell.2018.12.015 (2019).
doi: 10.1016/j.cell.2018.12.015 pubmed: 30661751
Tanaka, S. et al. A novel pathogenic variant in the glucokinase gene found in two Japanese siblings with maturity-onset diabetes of the young 2. Endocr. J. 70(6), 629–634. https://doi.org/10.1507/endocrj.EJ22-0541 (2023).
doi: 10.1507/endocrj.EJ22-0541 pubmed: 37045781
Shintani, M., Yagi, H., Nakayama, T., Saji, T. & Matsuoka, R. A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J. Med. Genet. 46(5), 331–337. https://doi.org/10.1136/jmg.2008.062703 (2009).
doi: 10.1136/jmg.2008.062703 pubmed: 19211612
Azuma, K. et al. Loss-of-function mutations in SGCE found in Japanese patients with myoclonus-dystonia. Clin. Genet. 103(2), 209–213. https://doi.org/10.1111/cge.14233 (2023).
doi: 10.1111/cge.14233 pubmed: 36161439
Morita, S. et al. Functional characterization of variants found in Japanese patients with hereditary hemorrhagic telangiectasia. Clin. Genet. 105(5), 543–548. https://doi.org/10.1111/cge.14483 (2024).
doi: 10.1111/cge.14483 pubmed: 38225712
1000 Genomes Project Consortium; Auton A et al. A global reference for human genetic variation. Nature 526(7571), 68–74. https://doi.org/10.1038/nature15393 (2015).
doi: 10.1038/nature15393 pubmed: 26432245
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581(7809), 434–443. https://doi.org/10.1038/s41586-020-2308-7 (2020).
doi: 10.1038/s41586-020-2308-7 pubmed: 32461654 pmcid: 7334197
Higasa, K. et al. Human genetic variation database, a reference database of genetic variations in the Japanese population. J. Hum. Genet. 61(6), 547–553. https://doi.org/10.1038/jhg.2016.12 (2016).
doi: 10.1038/jhg.2016.12 pubmed: 26911352 pmcid: 4931044
Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11(1), 1–9. https://doi.org/10.1038/nprot.2015.123 (2016).
doi: 10.1038/nprot.2015.123 pubmed: 26633127
Schwarz, J. M., Cooper, D. N., Schuelke, M. & Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods. 11(4), 361–362. https://doi.org/10.1038/nmeth.2890 (2014).
doi: 10.1038/nmeth.2890 pubmed: 24681721
Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46(3), 310–315. https://doi.org/10.1038/ng.2892 (2014).
doi: 10.1038/ng.2892 pubmed: 24487276 pmcid: 3992975
Nomura, S. et al. Rare and low-frequency variants in RNF213 confer susceptibility to moyamoya syndrome associated with hyperthyroidism. World Neurosurg. 127, e460–e466. https://doi.org/10.1016/j.wneu.2019.03.172 (2019).
doi: 10.1016/j.wneu.2019.03.172 pubmed: 30922903
Morita, S. et al. Triple bypass for multisystem smooth muscle dysfunction syndrome due to Arg179His ACTA2 mutation. J. Stroke Cerebrovasc. Dis. 31(9), 106402. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106402 (2022).
doi: 10.1016/j.jstrokecerebrovasdis.2022.106402 pubmed: 35248443
Munot, P. et al. A novel distinctive cerebrovascular phenotype is associated with heterozygous Arg179 ACTA2 mutations. Brain 135(Pt 8), 2506–2514. https://doi.org/10.1093/brain/aws172 (2012).
doi: 10.1093/brain/aws172 pubmed: 22831780 pmcid: 3407424
Qiu, Q. W. et al. Evidence of recent natural selection on the Southeast Asian deletion (–(SEA)) causing α-thalassemia in South China. BMC Evol. Biol. 13, 63. https://doi.org/10.1186/1471-2148-13-63 (2013).
doi: 10.1186/1471-2148-13-63 pubmed: 23497175 pmcid: 3626844
Jomoui, W., Fucharoen, G., Sanchaisuriya, K., Nguyen, V. H. & Fucharoen, S. Hemoglobin constant spring among Southeast Asian populations: Haplotypic heterogeneities and phylogenetic analysis. PLoS One. 10(12), e0145230. https://doi.org/10.1371/journal.pone.0145230 (2015).
doi: 10.1371/journal.pone.0145230 pubmed: 26683994 pmcid: 4686174
Turnpenny, P. D. & Ellard, S. Alagille syndrome: Pathogenesis, diagnosis and management. Eur. J. Hum. Genet. 20(3), 251–257. https://doi.org/10.1038/ejhg.2011.181 (2012).
doi: 10.1038/ejhg.2011.181 pubmed: 21934706
Guey, S., Tournier-Lasserve, E., Hervé, D. & Kossorotoff, M. Moyamoya disease and syndromes: From genetics to clinical management. Appl. Clin. Genet. 8, 49–68. https://doi.org/10.2147/TACG.S42772 (2015).
doi: 10.2147/TACG.S42772 pubmed: 25733922 pmcid: 4337618
Gupta, M. et al. Management of moyamoya syndrome in patients with Noonan syndrome. J. Clin. Neurosci. 28, 107–111. https://doi.org/10.1016/j.jocn.2015.11.017 (2016).
doi: 10.1016/j.jocn.2015.11.017 pubmed: 26778511
Grant, A. R. et al. Assessing the gene-disease association of 19 genes with the RASopathies using the ClinGen gene curation framework. Hum. Mutat. 39(11), 1485–1493. https://doi.org/10.1002/humu.23624 (2018).
doi: 10.1002/humu.23624 pubmed: 30311384 pmcid: 6326381
Riller, Q. & Rieux-Laucat, F. RASopathies: From germline mutations to somatic and multigenic diseases. Biomed. J. 44(4), 422–432. https://doi.org/10.1016/j.bj.2021.06.004 (2021).
doi: 10.1016/j.bj.2021.06.004 pubmed: 34175492 pmcid: 8514848
Alhazmi, A. M., Alsubaie, M. A. & Alanazi, R. R. Concurrent presentation of euryblepharon and moyamoya syndrome in costello syndrome: A rare clinical case. Cureus 15(6), e40808. https://doi.org/10.7759/cureus.40808 (2023).
doi: 10.7759/cureus.40808 pubmed: 37489185 pmcid: 10363016
Bohnen, M. S. et al. Loss-of-function ABCC8 mutations in pulmonary arterial hypertension. Circ. Genom Precis. Med. 11(10), e002087. https://doi.org/10.1161/CIRCGEN.118.002087 (2018).
doi: 10.1161/CIRCGEN.118.002087 pubmed: 30354297 pmcid: 6206877
Tokunaga, K., Hishikawa, T., Sugiu, K. & Date, I. Fatal outcomes of pediatric patients with moyamoya disease associated with pulmonary arterial hypertension. Report of two cases. Clin. Neurol. Neurosurg. 115(3), 335–338. https://doi.org/10.1016/j.clineuro.2012.05.002 (2013).
doi: 10.1016/j.clineuro.2012.05.002 pubmed: 22626534
Fukushima, H., Takenouchi, T. & Kosaki, K. Homozygosity for moyamoya disease risk allele leads to moyamoya disease with extracranial systemic and pulmonary vasculopathy. Am. J. Med. Genet. A 170(9), 2453–2456. https://doi.org/10.1002/ajmg.a.37829 (2016).
doi: 10.1002/ajmg.a.37829 pubmed: 27375007
Suzuki, H. et al. Genomic comparison with supercentenarians identifies RNF213 as a risk gene for pulmonary arterial hypertension. Circ. Genom. Precis. Med. 11(12), e002317. https://doi.org/10.1161/CIRCGEN.118.002317 (2018).
doi: 10.1161/CIRCGEN.118.002317 pubmed: 30562119
Hiraide, T. et al. Poor outcomes in carriers of the RNF213 variant (p.Arg4810Lys) with pulmonary arterial hypertension. J. Heart Lung Transplant. 39(2), 103–112. https://doi.org/10.1016/j.healun.2019.08.022 (2020).
doi: 10.1016/j.healun.2019.08.022 pubmed: 31542298
Ye, M. et al. Mutation of the bone morphogenetic protein GDF3 causes ocular and skeletal anomalies. Hum. Mol. Genet. 19(2), 287–298. https://doi.org/10.1093/hmg/ddp496 (2010).
doi: 10.1093/hmg/ddp496 pubmed: 19864492
Chen, J., Li, X., Niu, Y., Wu, Z. & Qiu, G. Functional and In silico assessment of GDF3 gene variants in a Chinese congenital scoliosis population. Med. Sci. Monit. 24, 2992–3001. https://doi.org/10.12659/MSM.910232 (2018).
doi: 10.12659/MSM.910232 pubmed: 29735971 pmcid: 5978024
Lee, C. K. et al. Spinal deformities in Noonan syndrome: A clinical review of sixty cases. J. Bone Joint Surg. Am. 83(10), 1495–1502 (2001).
doi: 10.2106/00004623-200110000-00006 pubmed: 11679599
Chida-Nagai, A. et al. Identification of prostaglandin I2 synthase rare variants in patients with Williams syndrome and severe peripheral pulmonary stenosis. J. Am. Heart Assoc. 13(9), e032872. https://doi.org/10.1161/JAHA.123.032872 (2024).
doi: 10.1161/JAHA.123.032872 pubmed: 38639351 pmcid: 11179920
Klau, J. et al. Exome first approach to reduce diagnostic costs and time—retrospective analysis of 111 individuals with rare neurodevelopmental disorders. Eur. J. Hum. Genet. 30(1), 117–125. https://doi.org/10.1038/s41431-021-00981-z (2022).
doi: 10.1038/s41431-021-00981-z pubmed: 34690354
Gosso, M. F. et al. Exome-first approach identified novel INDELs and gene deletions in Mowat-Wilson Syndrome patients. Hum. Genome Var. 5, 21. https://doi.org/10.1038/s41439-018-0021-y (2018).
doi: 10.1038/s41439-018-0021-y pubmed: 30083364 pmcid: 6070557
Blair, D. R. et al. A nondegenerate code of deleterious variants in Mendelian loci contributes to complex disease risk. Cell 155(1), 70–80. https://doi.org/10.1016/j.cell.2013.08.030 (2013).
doi: 10.1016/j.cell.2013.08.030 pubmed: 24074861
Hirota, K. et al. Association of rare nonsynonymous variants in PKD1 and PKD2 with familial intracranial aneurysms in a Japanese population. J. Stroke Cerebrovasc. Dis. 25(12), 2900–2906. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.08.002 (2016).
doi: 10.1016/j.jstrokecerebrovasdis.2016.08.002 pubmed: 27567292
Le Ribeuz, H. et al. SUR1 as a new therapeutic target for pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 66(5), 539–554. https://doi.org/10.1165/rcmb.2021-0180OC (2022).
doi: 10.1165/rcmb.2021-0180OC pubmed: 35175177
Nakayama, T. et al. Splicing mutation of the prostacyclin synthase gene in a family associated with hypertension. Biochem. Biophys. Res. Commun. 297(5), 1135–1139. https://doi.org/10.1016/s0006-291x(02)02341-0 (2002).
doi: 10.1016/s0006-291x(02)02341-0 pubmed: 12372404
Wang, X. J. et al. Association of rare PTGIS variants with susceptibility and pulmonary vascular response in patients with idiopathic pulmonary arterial hypertension. JAMA Cardiol. 5(6), 677–684. https://doi.org/10.1001/jamacardio.2020.0479 (2020).
doi: 10.1001/jamacardio.2020.0479 pubmed: 32236489
Zhu, J., Zhang, M., Sun, Y. & Zhang, X. Moyamoya syndrome with ruptured aneurysm in α-thalassemia: A case report. Exp. Ther. Med. 24(3), 556. https://doi.org/10.3892/etm.2022.11494 (2022).
doi: 10.3892/etm.2022.11494 pubmed: 35978939 pmcid: 9366260
Saxena, P., Alkaissi, H., Chauhan, R. & Muthu, J. Moyamoya syndrome (MMS) in a patient with sickle cell disease (SCD) and protein S deficiency. Cureus. 15(1), e34314. https://doi.org/10.7759/cureus.34314 (2023).
doi: 10.7759/cureus.34314 pubmed: 36860230 pmcid: 9970684

Auteurs

Akikazu Nakamura (A)

Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan.

Shunsuke Nomura (S)

Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan.
Krembil Brain Institute, University Health Network, University of Toronto, Toronto, Canada.

Shoko Hara (S)

Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan.

Thiparpa Thamamongood (T)

Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan.

Taketoshi Maehara (T)

Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan.

Tadashi Nariai (T)

Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan.

Shasha Khairullah (S)

Haematology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.

Kay Sin Tan (KS)

Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.

Kenko Azuma (K)

Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.

Ayako Chida-Nagai (A)

Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan.
Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, Tokyo, Japan.

Yoshiyuki Furutani (Y)

Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, Tokyo, Japan.

Takahiro Hori (T)

Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan.

Koji Yamaguchi (K)

Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan.

Takakazu Kawamata (T)

Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan.

Constantin Roder (C)

Department of Neurosurgery, Eberhard Karls University of Tübingen, Tübingen, Germany.

Hiroyuki Akagawa (H)

Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan. akagawa.hiroyuki@twmu.ac.jp.
Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan. akagawa.hiroyuki@twmu.ac.jp.
Medical AI Center, Tokyo Women's Medical University, Tokyo, Japan. akagawa.hiroyuki@twmu.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH