A shift in substrate requirement might cause speciation of the lichenized fungi, Varicellaria hemisphaerica and V. lactea (Pertusariales, Ascomycota).


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
09 10 2024
Historique:
received: 14 05 2024
accepted: 30 09 2024
medline: 10 10 2024
pubmed: 10 10 2024
entrez: 9 10 2024
Statut: epublish

Résumé

Proper species recognition is required to correctly estimate species preferences and their vulnerability or for eco-evolutionary inference. Varicellaria hemisphaerica and Varicellaria lactea are almost completely morphologically homogeneous species with unclear identification features. To evaluate the importance of morphological, chemical, and ecological characteristics used in recognition of these species, we tested 670 specimens, of which 42 were analyzed phylogenetically using nucITS rDNA, SSU rDNA, and LSU rDNA markers. This integrated taxonomical approach showed that V. hemisphaerica is distinct from V. lactea, and that substrate requirements, together with phylogenetic differences and the size of soredia, differentiate these species. The chemical composition of secondary lichen metabolites in both analyzed species showed similar variation and, therefore, this feature is not diagnostic in species recognition, although suggested by previous studies. The potential speciation of the two species seems to be caused by the shift in the substrate requirements.

Identifiants

pubmed: 39384908
doi: 10.1038/s41598-024-74937-w
pii: 10.1038/s41598-024-74937-w
doi:

Substances chimiques

DNA, Ribosomal 0
DNA, Fungal 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

23514

Informations de copyright

© 2024. The Author(s).

Références

Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 85, 407–415. https://doi.org/10.1111/j.1095-8312.2005.00503.x (2005).
doi: 10.1111/j.1095-8312.2005.00503.x
Schlick-Steiner, B. C. et al. Integrative taxonomy: a Multisource Approach to Exploring Biodiversity. Annu. Rev. Èntomol 55, 421–438. https://doi.org/10.1146/annurev-ento-112408-085432 (2010).
doi: 10.1146/annurev-ento-112408-085432 pubmed: 19737081
Camargo, A., Sites, J. Species delimitation: a decade after the renaissance. In The species problem-ongoing issues (ed Pavlinov, I.) 225–247 (Tech, London). https://doi.org/10.5772/52664 (2013).
Smith, M. L. & Carstens, B. C. Process-based species delimitation leads to identification of more biologically relevant species. Evolution 74(2), 216–229. https://doi.org/10.1111/evo.13878 (2020).
doi: 10.1111/evo.13878 pubmed: 31705650
Lücking, R. et al. Turbo-taxonomy to assemble a megadiverse lichen genus: seventy new species of Cora (Basidiomycota: Agaricales: Hygrophoraceae), honoring David Leslie Hawksworth’s seventieth birthday. Fungal Divers. 84, 139–207. https://doi.org/10.1007/s13225-016-0374-9 (2017).
doi: 10.1007/s13225-016-0374-9
Wilk, K., Pabijan, M., Saługa, M., Gaya, E. & Lücking, R. Phylogenetic revision of South American Teloschistaceae (lichenized Ascomycota, Teloschistales) reveals three new genera and species. Mycologia 113(2), 278–299. https://doi.org/10.1080/00275514.2020.1830672 (2021).
doi: 10.1080/00275514.2020.1830672 pubmed: 33428561
Wilk, K. & Lücking, R. Quantitative integrative taxonomy informs species delimitation in Teloschistaceae (lichenized Ascomycota): the genus Wetmoreana as a case study. IMA Fungus 15(1), 9. https://doi.org/10.1186/s43008-024-00140-1 (2024).
doi: 10.1186/s43008-024-00140-1 pubmed: 38556886 pmcid: 11225190
Magain, N. et al. High species richness in the lichen genus Peltigera (Ascomycota, Lecanoromycetes): 34 species in the dolichorhizoid and scabrosoid clades of section Polydactylon, including 24 new to science. Persoonia 51(1), 1–88. https://doi.org/10.3767/persoonia.2023.51.01 (2023).
doi: 10.3767/persoonia.2023.51.01 pubmed: 38665978 pmcid: 11041898
Otálora, M. A. G., Martínez, I., Aragón, G. & Wedin, M. Species delimitation and phylogeography of the Pectenia species-complex: a misunderstood case of species-pairs in lichenized fungi, where reproduction mode does not delimit lineages. Fungal Biol. 121(3), 222–233. https://doi.org/10.1016/j.funbio.2016.12.001 (2017).
doi: 10.1016/j.funbio.2016.12.001 pubmed: 28215350
Leavitt, S. D. et al. Assessing phylogeny and historical biogeography of the largest genus of lichen-forming fungi, Xanthoparmelia (Parmeliaceae, Ascomycota). Lichenologist 50(3), 299–312. https://doi.org/10.1017/S0024282918000233 (2018).
doi: 10.1017/S0024282918000233
Del-Prado, R., Divakar, P. K., Lumbsch, H. T. & Crespo, A. Hidden genetic diversity in an asexually reproducing Lichen forming Fungal Group. PLoS ONE 11, e0161031. https://doi.org/10.1371/journal.pone.0161031 (2016).
doi: 10.1371/journal.pone.0161031 pubmed: 27513649 pmcid: 4981466
Onuţ-Brännström, I., Tibell, L. & Johannesson, H. A worldwide phylogeography of the white worm lichens Thamnolia reveals three lineages with distinct habitats and evolutionary histories. Ecol. Evol. 7(10), 3602–3615. https://doi.org/10.1002/ece3.2917 (2017).
doi: 10.1002/ece3.2917 pubmed: 28515896 pmcid: 5433967
Vondrák, J. et al. Substrate switches, phenotypic innovations and allopatric speciation formed taxonomic diversity within the lichen genus Blastenia. J. Syst. Evol. 58(3), 295–330. https://doi.org/10.1111/jse.12503 (2019).
doi: 10.1111/jse.12503
Lõhmus, A., Motiejūnaitė, J. & Lõhmus, P. Regionally varying Habitat relationships in Lichens: the Concept and evidence with an emphasis on North-Temperate. J Fungi 9(3), 341. https://doi.org/10.3390/jof9030341 (2023).
doi: 10.3390/jof9030341
Printzen, C. & Lumbsch, H. T. Molecular evidence for the diversification of extant lichens in the late cretaceous and tertiary. Mol. Phylogenetics Evol. 17(3), 379–387. https://doi.org/10.1006/mpev.2000.0852 (2000).
doi: 10.1006/mpev.2000.0852
Kraichak, E. et al. A tale of two Hyper-diversities: diversification dynamics of the two largest families of lichenized fungi. Sci Rep 5, 10028. https://doi.org/10.1038/srep10028 (2015).
doi: 10.1038/srep10028 pubmed: 25944223 pmcid: 4421861
Leavitt, S. D., Lumbsch, H. T., Stenroos, S. & Clair, L. L. S. Pleistocene speciation in North American lichenized fungi and the impact of alternative species circumscriptions and rates of molecular evolution on divergence estimates. PLoS ONE 8(12), e85240. https://doi.org/10.1371/journal.pone.0085240 (2013).
doi: 10.1371/journal.pone.0085240 pubmed: 24386465 pmcid: 3873437
Kantelinen, A., Printzen, C., Poczai, P. & Myllys, L. Lichen speciation is sparked by a substrate requirement shift and reproduction mode differentiation. Sci Rep 12, 11048. https://doi.org/10.1038/s41598-022-14970-9 (2022).
doi: 10.1038/s41598-022-14970-9 pubmed: 35773369 pmcid: 9247095
Moncada, B., Coca, L. F. & Lücking, R. Neotropical members of Sticta (lichenized Ascomycota: Lobariaceae) forming photosymbiodemes, with the description of seven new species. Bryologist 116(2), 169–200. https://doi.org/10.1639/0007-2745-116.2.169 (2013).
doi: 10.1639/0007-2745-116.2.169
Marini, L., Nascimbene, J. & Nimis, P. L. Large-scale patterns of epiphytic lichen species richness: photobiont-dependent response to climate and forest structure. Sci. Total Environ. 409(20), 4381–4386. https://doi.org/10.1016/j.scitotenv.2011.07.015 (2011).
doi: 10.1016/j.scitotenv.2011.07.015 pubmed: 21802711
Tibell, L. Photobiont association and molecular phylogeny of the lichen genus Chaenotheca. Bryologist 104(2), 191–198. https://doi.org/10.1639/0007-2745(2001)104 (2001).
doi: 10.1639/0007-2745(2001)104
Thüs, H. et al. Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). Eur. J. Phycol. 46(4), 399–415. https://doi.org/10.1080/09670262.2011.629788 (2011).
doi: 10.1080/09670262.2011.629788
Škaloud, P., Friedl, T., Hallmann, C., Beck, A. & Dal Grande, F. Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta). J. Phycol. 52(4), 599–617. https://doi.org/10.1111/jpy.12422 (2016).
doi: 10.1111/jpy.12422 pubmed: 27135898
Pröschold, T. & Darienko, T. The green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): new generic and species concept among this widely distributed genus. Phytotaxa 441(2), 113–142. https://doi.org/10.11646/phytotaxa.441.2.2 (2020).
doi: 10.11646/phytotaxa.441.2.2
Ertz, D., Guzow-Krzemińska, B., Thor, G., Łubek, A. & Kukwa, M. Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Sci Rep 8(1), 4952. https://doi.org/10.1038/s41598-018-23219-3 (2018).
doi: 10.1038/s41598-018-23219-3 pubmed: 29563606 pmcid: 5862901
Fries, T. M. Lichenographia Scandinavica. 1, 1–324 (Upsaliae,1871).
Schmitt, I. et al. A new circumscription of the genus Varicellaria (Pertusariales, Ascomycota). MycoKeys 4, 23–36. https://doi.org/10.3897/mycokeys.4.3545 (2012).
doi: 10.3897/mycokeys.4.3545
Zhou, J. & Ren, Q. Varicellaria emeiensis sp. nov. and a review of the genus in China. Mycotaxon 133(1), 71–78. https://doi.org/10.5248/133.71 (2018).
doi: 10.5248/133.71
Fryday, A. M. Varicel cacuminumuminum (lichenized Ascomycota, Pertusariales), a new species of lichenized-fungi from Campbell Island/Motu Ihupuku, with notes on Varicellaria and other Pertusariales in New Zealand. N Z. J. Bot. 61(4), 259–268. https://doi.org/10.1080/0028825X.2022.2120823 (2022).
doi: 10.1080/0028825X.2022.2120823
Schmitt, I. & Lumbsch, H. T. Molecular phylogeny of the Pertusariaceae supports secondary chemistry as an important systematic character set in lichen-forming ascomycetes. Mol. Phylogenetics Evol. 33(1), 43–55. https://doi.org/10.1016/j.ympev.2004.04.014 (2004).
doi: 10.1016/j.ympev.2004.04.014
Nylander, W. Enumération générale de lichens, avec l’indication sommaire de leur distribution géographique. Mém Soc. Imp Sci. Nat. Cherbourg 5, 85–146 (1858).
Wainio, E. A. Lichenes insularum philippinarum. Philipp J. Sci. 8, 99–137 (1913).
Elix, J. A., Aptroot, A. & Archer, A. W. The lichen genus Pertusaria (lichenized Ascomycotina) in Papua New Guinea and Australia: twelve new species and thirteen new reports. Mycotaxon 64, 17–35 (1997).
Chambers, S. P., Gilbert, O. L., Aptroot, J. P. W. & Purvis, O. W. A. Pertusaria DC. in The lichen flora of Great Britain and Ireland (ed. C. W. Smith et al.) 673–687 (Natural History Museum Publications, London, 2009). https://doi.org/10.1017/S0024282909990521 . (1805).
Park, J. S. et al. Taxonomic revision of the Lichen Genera Pertusaria, Varicellaria, and Variolaria (Pertusariales, Ascomycota) in South Korea. Mycobiology 45(4), 270–285. https://doi.org/10.5941/MYCO.2017.45.4.270 (2017).
doi: 10.5941/MYCO.2017.45.4.270 pubmed: 29371795 pmcid: 5780359
Tønsberg, T. Varicellaria lactea new to the U.S.A. from Alaska. Opusc Philolichenum 17, 1–5 (2018).
doi: 10.5962/p.386170
Hanko, B. Die chemotypen der Flechtengattung Pertusaria in Europa. Biblioth. Lichenol 19, 1–297. https://doi.org/10.1111/j.1756-1051.1986.tb00889.x (1983).
doi: 10.1111/j.1756-1051.1986.tb00889.x
Tønsberg, T. The sorediate and isidiate, corticolous, crustose lichens in Norway. Sommerfeltia 14(1), 1–331. https://doi.org/10.2478/som-1992-0002 (1992).
doi: 10.2478/som-1992-0002
Ren, Q. & Zhao, Z. T. Two new records of the lichen genus Pertusaria from China. Guihaia 24, 329–331 (2004).
Ren, Q. & Li, S. X. New records of crustose lichens from China–1. Mycotaxon 125(1), 65–67. https://doi.org/10.5248/125.65 (2013).
doi: 10.5248/125.65
Ren, Q. A revision of the lichen genus Ochrolechia in China. Lichenologist 49(1), 67–84. https://doi.org/10.1017/S0024282916000529 (2017).
doi: 10.1017/S0024282916000529
Archer, A. W. & Elix, J. A. A preliminary world-wide key to the lichen genus Pertusaria (including Lepra species). Preprint at (2017). http://www.azkurs.org/a-preliminary-world-wide-key-to-the-lichen-genus.html
Stocker-Wörgötter, E., Elix, J. A. & Grube, M. Secondary Chemistry of Lichen-forming Fungi: chemosyndromic variation and DNA-Analyses of cultures and Chemotypes in the Ramalina farinacea Complex. Bryologist 107, 152–162. https://doi.org/10.1639/0007-2745(2004)107[0152:SCOLFC]2.0.CO;2 (2004).
doi: 10.1639/0007-2745(2004)107[0152:SCOLFC]2.0.CO;2
Kukwa, M. The lichen genus Ochrolechia in Europe (Fundacja Rozwoju Uniwersytetu Gdańskiego, 2011).
Kukwa, M., Schmitt, I. & Ertz, D. Ochrolechia incarnata comb. nov. (Lecanoromycetes, Ascomycota), a distinct species of the O. parella group from Europe and Macaronesia. Phytotaxa 371(2), 119–126. https://doi.org/10.11646/phytotaxa.371.2.6 (2018).
doi: 10.11646/phytotaxa.371.2.6
Kukwa, M. The lichen genus Ochrolechia in Poland II. Sorediate taxa with variolaric acid. Herzogia 21, 5–24 (2008).
Paukov, A. et al. The effects of edaphic and climatic factors on secondary lichen chemistry: a case study using saxicolous lichens. Diversity 11(6), 94. https://doi.org/10.3390/d11060094 (2019).
doi: 10.3390/d11060094
Cannon, P. et al. Pertusariales: Ochrolechiaceae, including the genera Lepra, Ochrolechia and Varicellaria. Rev. Brit. Irish Lich. 5, 1–17 (2021).
Kondratyuk, S. Y. et al. New and noteworthy lichen-forming and lichenicolous Fungi 7. Acta Bot. Hungarica 60(1–2), 115–184. https://doi.org/10.1556/034.60.2018.1-2.8 (2018).
doi: 10.1556/034.60.2018.1-2.8
Liu, D., Wang, L., Wang, X. Y. & Hur, J. S. Two new species of the genus Candelariella from China and Korea. Mycobiology 47(1), 40–49. https://doi.org/10.1080/12298093.2019.1583785 (2019).
doi: 10.1080/12298093.2019.1583785 pubmed: 31001449 pmcid: 6452912
Kalb, K. New or otherwise interesting lichens. I. Biblioth Lichenol 78, 141–167 (2001).
Harris, R. & Ladd, D. The lichen genus Chrysothrix in the Ozark ecoregion, including a preliminary treatment for eastern and central North America. Opusc Philolichenum 5, 29–42. https://doi.org/10.5962/p.381953 (2008).
doi: 10.5962/p.381953
Olszewska, S., Zwolicki, A. & Kukwa, M. Chemistry and morphology of Chrysothrix Candelaris in Poland with notes on the taxonomy of C. xanthina. Mycotaxon 128, 165–172. https://doi.org/10.5248/128.165 (2014).
doi: 10.5248/128.165
Nimis, P. L. The Lichens of Italy. A Second Annotated Catalogue (EUT Edizioni Università di Trieste, 2016).
Martellos, S., Conti, M. & Nimis, P. L. Aggregation of Italian Lichen Data in ITALIC 7.0. J. Fungi 9(5), 556. https://doi.org/10.3390/jof9050556 (2023).
doi: 10.3390/jof9050556
Guzow-Krzemińska, B. Photobiont flexibility in the lichen Protoparmeliopsis muralis as revealed by ITS rDNA analyses. Lichenologist 38(5), 469–476. https://doi.org/10.1017/S0024282906005068 (2006).
doi: 10.1017/S0024282906005068
Muggia, L., Perez-Ortega, S., Kopun, T., Zellnig, G. & Grube, M. Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann. Bot. 114(3), 463–475. https://doi.org/10.1093/aob/mcu146 (2014).
doi: 10.1093/aob/mcu146 pubmed: 25096324 pmcid: 4204673
Henskens, F. L., Green, T. G. A. & Wilkins, A. Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Ann. Bot. 110(3), 555–563. https://doi.org/10.1093/aob/mcs108 (2012).
doi: 10.1093/aob/mcs108 pubmed: 22648879 pmcid: 3400443
Magain, N. & Sérusiaux, E. Do photobiont switch and cephalodia emancipation act as evolutionary drivers in the lichen symbiosis? A case study in the Pannariaceae (Peltigerales). PLoS One 9(2), https://doi.org/10.1371/journal.pone.0089876 (2014).
Muggia, L., Grube, M. & Tretiach, M. A combined molecular and morphological approach to species delimitation in black-fruited, endolithic Caloplaca: high genetic and low morphological diversity. Mycol. Res. 112, 36–49. https://doi.org/10.1016/j.mycres.2007.02.001 (2008).
doi: 10.1016/j.mycres.2007.02.001 pubmed: 18222679
Nelsen, M. P., & Gargas, A. Lecanorales, Stereocaulaceae. Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria. New. Phytol 177(1), 264–275. https://doi.org/10.1111/j.1469-8137.2007.02241.x (2008).
Piercey-Normore, M. D. & De Priest, P. T. Algal switching among lichen symbioses. Am. J. Bot. 88(8), 1490–1498 (2001).
doi: 10.2307/3558457 pubmed: 21669682
Lücking, R., Leavitt, S. D. & Hawksworth, D. L. Species in lichen-forming fungi: balancing between conceptual and practical considerations, and between phenotype and phylogenomics. Fungal Divers. 109, 99–154. https://doi.org/10.1007/s13225-021-00477-7 (2021).
doi: 10.1007/s13225-021-00477-7
Crespo, A. & Pérez-Ortega, S. Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. Anales Jard Bot. Madrid 66, 71–81. https://doi.org/10.3989/ajbm.2225 (2009).
doi: 10.3989/ajbm.2225
Crespo, A. & Lumbsch, H. T. Cryptic species in lichen-forming fungi. IMA Fungus 1, 167–170. https://doi.org/10.5598/imafungus.2010.01.02.09 (2010).
doi: 10.5598/imafungus.2010.01.02.09 pubmed: 22679576 pmcid: 3348775
Molina, M. C., Del-Prado, R., Divakar, P. K., Sánchez-Mata, D. & Crespo, A. Another example of cryptic diversity in lichen-forming fungi: the new species Parmelia mayi (Ascomycota: Parmeliaceae). Org. Divers. Evol. 11, 331–342. https://doi.org/10.1007/s13127-011-0060-4 (2011).
doi: 10.1007/s13127-011-0060-4
Frolov, I. Three new, seemingly-cryptic species in the lichen genus Caloplaca (Teloschistaceae) distinguished in two-phase phenotype evaluation. Ann. Bot. Fenn 53(3/4), 243–262. https://doi.org/10.5735/085.053.0413 (2016).
doi: 10.5735/085.053.0413
Guzow-Krzemińska et al. Phylogenetic placement of Lepraria cryptovouauxii sp. nov. (Lecanorales, Lecanoromycetes, Ascomycota) with notes on other Lepraria species from South America. MycoKeys 53, 1–22. https://doi.org/10.3897/mycokeys.53.33508 (2019).
Vondrák, J., Říha, P., Arup, U. & Søchting, U. The taxonomy of the Caloplaca citrina group (Teloschistaceae) in the Black Sea region, with contributions to the cryptic species concept in lichenology. Lichenologist 41, 571–604. https://doi.org/10.1017/S0024282909008317 (2009).
doi: 10.1017/S0024282909008317
Lendemer, J. C. A taxonomic revision of the north American species of Lepraria s.l. that produce divaricatic acid, with notes on the type species of the Genus L. incana. Mycologia. 103 (6), 1216–1229. https://doi.org/10.3852/11-032 (2011).
doi: 10.3852/11-032 pubmed: 21642343
Lendemer, J. C. Shifting paradigms in the taxonomy of lichenized fungi: molecular phylogenetic evidence corroborates morphology but not chemistry in the Lepraria neglecta group. Mem. New. York Bot. Garden. 108, 127–153 (2013).
Lendemer, J. C. & Hodkinson, B. P. A radical shift in the taxonomy of Lepraria s.l.: molecular and morphological studies shed new light on the evolution of asexuality and lichen growth form diversification. Mycologia 105(4), 994–1018. https://doi.org/10.3852/12-338 (2013).
doi: 10.3852/12-338 pubmed: 23709574
Marshall, W. A. Aerial dispersal of lichen soredia in the maritime Antarctic. New. Phytol 134(3), 523–530. https://doi.org/10.1111/j.1469-8137.1996.tb04370.x (1996).
doi: 10.1111/j.1469-8137.1996.tb04370.x
Orange, A., James, P. W. & White, F. J. Microchemical Methods for the Identification of Lichens (British Lichen Society, 2001).
Guzow-Krzemińska, B. & Węgrzyn, G. Potential use of restriction analysis of PCR amplified DNA fragments in construction of molecular databased identification keys of lichens. Mycotaxon 76, 305–313 (2000).
Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x (1993).
doi: 10.1111/j.1365-294X.1993.tb00005.x pubmed: 8180733
White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics in PCR protocols: a Guide to Methods and Applications (ed. Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 315‒322 (Academic Press, New York, 1990).
Zoller, S., Scheidegger, C. & Sperisen, C. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31, 511–516. https://doi.org/10.1006/lich.1999.0220 (1990).
doi: 10.1006/lich.1999.0220
Vilgalys, R. & Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 172(8), 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990 (1990).
doi: 10.1128/jb.172.8.4238-4246.1990 pubmed: 2376561 pmcid: 213247
Cubeta, M. A., Echandi, E., Abernethy, T. & Vilgalys, R. Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology 81, 1395–1400. https://doi.org/10.1094/phyto-81-1395 (1991).
doi: 10.1094/phyto-81-1395
Nelsen, M. P. & Gargas, A. Actin type I introns offer potential for increasing phylogenetic resolution in Asterochloris (Chlorophyta: Trebouxiophyceae). Lichenologist 38, 435–440. https://doi.org/10.1017/S0024282906005779 (2006).
doi: 10.1017/S0024282906005779
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066. https://doi.org/10.1093/nar/gkf436 (2002).
doi: 10.1093/nar/gkf436 pubmed: 12136088 pmcid: 135756
Landan, G. & Graur, D. Local reliability measures from sets of co-optimal multiple sequence alignments. Pac. Symp. Biocomputing 13, 15–24. https://doi.org/10.1142/9789812776136_0003 (2008).
doi: 10.1142/9789812776136_0003
Penn, O. et al. GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Res. 38(Web Server issue), W23–W28. https://doi.org/10.1093/nar/gkq443 (2010).
Sela, I., Ashkenazy, H., Katoh, K. & Pupko, T. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 43(Web Server issue), W7–W14. https://doi.org/10.1093/nar/gkv318 (2015).
Muggia, L. et al. Formally described species woefully underrepresent phylogenetic diversity in the common lichen photobiont genus Trebouxia (Trebouxiophyceae, Chlorophyta): an impetus for developing an integrated taxonomy. Mol. Phylogenetics Evol. 149, 106821. https://doi.org/10.1016/j.ympev.2020.106821 (2020).
doi: 10.1016/j.ympev.2020.106821
Nylander, J. A. A. MrModeltest v2. Program Distributed by the Author (Evolutionary Biology Centre, Uppsala University, 2004).
Huelsenbeck, J. P. & Ronquist, F. M. R. B. A. Y. E. S. Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754 (2001).
doi: 10.1093/bioinformatics/17.8.754 pubmed: 11524383
Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gatew. Comput. Environ. Workshop (GCE). 1–8. https://doi.org/10.1109/GCE.2010.5676129 (2010). New Orleans, LA, USA.
Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucl. Acids Res. 44, W232–W235. https://doi.org/10.1093/nar/gkw256 (2016).
doi: 10.1093/nar/gkw256 pubmed: 27084950 pmcid: 4987875
Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35(2), 518–522. https://doi.org/10.1093/molbev/msx281 (2018).
doi: 10.1093/molbev/msx281 pubmed: 29077904
Rambaut, A. FigTree v1.4.2. Available Online at:  http://tree.bio.ed.ac.uk/software/figtree/. (accessed April 12, 2021).
Leavitt, S. D. et al. Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Mol. Ecol. 24(14), 3779–3797. https://doi.org/10.1111/mec.13271 (2015).
doi: 10.1111/mec.13271 pubmed: 26073165
Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. TCS: estimating gene genealogies. Parallel Distrib. Process. Symp. Int. Proc. 2, 184 (2002).
Leigh, J. W., Bryant, D. & PopART,. Full-feature software for haplotype network construction. Methods Ecol. Evol. 6(9), 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).
doi: 10.1111/2041-210X.12410
Fick, S. E., Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 . (2017)
R Core Team R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Preprint at https://www.R-project.org/ . (2023)
Kosecka, M. et al. New lineages of photobionts in Bolivian lichens expand our knowledge on habitat preferences and distribution of Asterochloris algae. Sci. Rep. 11(1), 8701. https://doi.org/10.1038/s41598-021-88110-0 (2021).
doi: 10.1038/s41598-021-88110-0 pubmed: 33888793 pmcid: 8062552
Borcard, D., Legendre, P., Avois-Jacquet, C. & Tuomisto, H. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85, 1826–1832. https://doi.org/10.1890/03-3111 (2004).
doi: 10.1890/03-3111
McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290–297. https://doi.org/10.2307/2680104 (2001).
doi: 10.2307/2680104

Auteurs

Magdalena Kosecka (M)

Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, Gdańsk, PL-80-308, Poland.

Magdalena Oset (M)

Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, Gdańsk, PL-80-308, Poland. magdalena.oset@ug.edu.pl.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH