Resilience of genetic diversity in forest trees over the Quaternary.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
14 Oct 2024
14 Oct 2024
Historique:
received:
15
12
2023
accepted:
11
09
2024
medline:
15
10
2024
pubmed:
15
10
2024
entrez:
14
10
2024
Statut:
epublish
Résumé
The effect of past environmental changes on the demography and genetic diversity of natural populations remains a contentious issue and has rarely been investigated across multiple, phylogenetically distant species. Here, we perform comparative population genomic analyses and demographic inferences for seven widely distributed and ecologically contrasting European forest tree species based on concerted sampling of 164 populations across their natural ranges. For all seven species, the effective population size, N
Identifiants
pubmed: 39402024
doi: 10.1038/s41467-024-52612-y
pii: 10.1038/s41467-024-52612-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8538Subventions
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 676876
Organisme : Academy of Finland (Suomen Akatemia)
ID : 287431
Informations de copyright
© 2024. The Author(s).
Références
Birks, H. J. B. & W, T. in European Atlas of Forest Tree Species (eds San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T. & Mauri, A.) (Publication Office of the European Union, Luxembourg, 2016).
Lascoux, M., Palmé, A. E., Cheddadi, R. & Latta, R. G. Impact of ice ages on the genetic structure of trees and shrubs. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 359, 197–207 (2004).
doi: 10.1098/rstb.2003.1390
Kremer, A. How well can existing forests withstand climate change in: Climate Change and Forest Genetic Diversity: Implications for Sustainable Forest Management in Europe.pp. 3–17. (eds. Koskela, J., Buck, A. & Teissier du Cros, E.), (Bioversity International, Rome, 2007).
Saleh, D. et al. Genome-wide evolutionary response of European oaks during the Anthropocene. Evolu. Lett. 6, 4–20 (2022).
doi: 10.1002/evl3.269
Alberto, F. J. et al. Potential for evolutionary responses to climate change - evidence from tree populations. Glob. Change Biol. 19, 1645–1661 (2013).
doi: 10.1111/gcb.12181
Li, L. et al. Teasing apart the joint effect of demography and natural selection in the birth of a contact zone. N. Phytol. 236, 1976–1987 (2022).
doi: 10.1111/nph.18480
Waples, R. S. What is Ne, anyway. J. Heredity 113, 371–379 (2022).
doi: 10.1093/jhered/esac023
Bai, W. et al. Demographically idiosyncratic responses to climate change and rapid Pleistocene diversification of the walnut genus Juglans (Juglandaceae) revealed by whole‐genome sequences. N. Phytol. 217, 1726–1736 (2018).
doi: 10.1111/nph.14917
Helmstetter, A. J., Béthune, K., Kamdem, N. G., Sonké, B. & Couvreur, T. L. P. Individualistic evolutionary responses of Central African rain forest plants to Pleistocene climatic fluctuations. Proc. Natl Acad. Sci. USA 117, 32509–32518 (2020).
pubmed: 33277432
pmcid: 7768702
doi: 10.1073/pnas.2001018117
Taberlet, P., Fumagalli, L., Wust-Saucy, A. & Cosson, J. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464 (1998).
pubmed: 9628000
doi: 10.1046/j.1365-294x.1998.00289.x
Petit, R. J. et al. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 300, 1563–1565 (2003).
pubmed: 12791991
doi: 10.1126/science.1083264
Ballard, J. W. O. & Whitlock, M. C. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744 (2004).
pubmed: 15012752
doi: 10.1046/j.1365-294X.2003.02063.x
Doyle, J. J. Defining coalescent genes: theory meets practice in organelle phylogenomics. Syst. Biol. 71, 476–489 (2022).
pubmed: 34191012
doi: 10.1093/sysbio/syab053
Liu, S. et al. Demographic history and natural selection shape patterns of deleterious mutation load and barriers to introgression across Populus genome. Mol. Biol. Evol. 39, msac008 (2022).
pubmed: 35022759
pmcid: 8826634
doi: 10.1093/molbev/msac008
Olsson, S. et al. Evolutionary history of the mediterranean Pinus halepensis-brutia species complex using gene-resequencing and transcriptomic approaches. Plant Mol. Biol. 106, 367–380 (2021).
pubmed: 33934278
doi: 10.1007/s11103-021-01155-7
Mayol, M. et al. A multiscale approach to detect selection in nonmodel tree species: Widespread adaptation despite population decline in Taxus baccata L. Evolu. Appl. 13, 143–160 (2020).
doi: 10.1111/eva.12838
Chen, J. et al. Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce. Evolu. Appl. 12, 1539–1551 (2019).
doi: 10.1111/eva.12801
Hou, Z. & Li, A. Population genomics reveals demographic history and genomic differentiation of Populus davidiana and Populus tremula. Front. Plant Sci. 11, 553736 (2020).
doi: 10.3389/fpls.2020.01103
Salojärvi, J. et al. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat. Genet. 49, 904–912 (2017).
pubmed: 28481341
doi: 10.1038/ng.3862
Cai, M., Wen, Y., Uchiyama, K., Onuma, Y. & Tsumura, Y. Population genetic diversity and structure of ancient tree populations of Cryptomeria japonica var. sinensis based on RAD-seq data. Forests 11, 1192 (2020).
doi: 10.3390/f11111192
Capblancq, T. et al. Whole‐exome sequencing reveals a long‐term decline in effective population size of red spruce (Picea rubens). Evolu. Appl. 13, 2190–2205 (2020).
doi: 10.1111/eva.12985
Opgenoorth, L. et al. The GenTree Platform: growth traits and tree-level environmental data in 12 European forest tree species. GigaScience 10, giab010 (2021).
pubmed: 33734368
pmcid: 7970660
Chen, J., Glémin, S. & Lascoux, M. Genetic diversity and the efficacy of purifying selection across plant and animal species. Mol. Biol. Evol. 34, 1417–1428 (2017).
pubmed: 28333215
doi: 10.1093/molbev/msx088
Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).
pubmed: 18302683
doi: 10.1111/j.1365-294X.2007.03659.x
Excoffier, L. & Foll, M. Fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27, 1332–1334 (2011).
pubmed: 21398675
doi: 10.1093/bioinformatics/btr124
Excoffier, L. et al. fastsimcoal2: demographic inference under complex evolutionary scenarios. Bioinformatics 37, 4882–4885 (2021).
pubmed: 34164653
pmcid: 8665742
doi: 10.1093/bioinformatics/btab468
Hirao, A. S. et al. Genetic diversity within populations of an arctic-alpine species declines with decreasing latitude across the Northern Hemisphere. J. Biogeogr. 44, 2740–2751 (2017).
doi: 10.1111/jbi.13085
Liu, X. & Fu, Y.-X. Stairway Plot 2: demographic history inference with folded SNP frequency spectra. Genome Biology 21, 280 (2020).
Mazet, O. & Noûs, C. Population genetics: coalescence rate and demographic parameters inference. Peer Community J. 3, e53 (2023).
doi: 10.24072/pcjournal.285
Chikhi, L., Sousa, V. C., Luisi, P., Goossens, B. & Beaumont, M. A. The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics 186, 983–995 (2010).
pubmed: 20739713
pmcid: 2975287
doi: 10.1534/genetics.110.118661
Wakeley, J. & Aliacar, N. Gene genealogies in a metapopulation. Genetics 159, 893–905 (2001).
pubmed: 11606561
pmcid: 1461837
doi: 10.1093/genetics/159.2.893
Wakeley, J. Nonequilibrium migration in human history. Genetics 153, 1863–1871 (1999).
pubmed: 10581291
pmcid: 1460876
doi: 10.1093/genetics/153.4.1863
Petit, R. J. & Hampe, A. Some evolutionary consequences of being a tree. Annu. Rev. Ecol. Evol. Syst. 37, 187–214 (2006).
doi: 10.1146/annurev.ecolsys.37.091305.110215
Pyhäjärvi, T., Kujala, S. T. & Savolainen, O. 275 years of forestry meets genomics in Pinus sylvestris. Evolu. Appl. 13, 11–30 (2020).
doi: 10.1111/eva.12809
Palstra, F. P. & Fraser, D. J. Effective/census population size ratio estimation: a compendium and appraisal. Ecol. Evol. 2, 2357–2365 (2012).
pubmed: 23139893
pmcid: 3488685
doi: 10.1002/ece3.329
Tyrmi, J. S. et al. Genomics of clinal local adaptation in Pinus sylvestris under continuous environmental and spatial genetic setting.G3: Genes, Genomes Genet. 10, 2683–2696 (2020).
doi: 10.1534/g3.120.401285
Jaramillo-Correa, J. P. et al. Evolutionary rate and genetic load in an emblematic Mediterranean tree following an ancient and prolonged population collapse. Mol. Ecol. 29, 4797–4811 (2020).
pubmed: 33063352
doi: 10.1111/mec.15684
Dial, R. J., Maher, C. T., Hewitt, R. E. & Sullivan, P. F. Sufficient conditions for rapid range expansion of a boreal conifer. Nature 608, 546–551 (2022).
pubmed: 35948635
pmcid: 9385489
doi: 10.1038/s41586-022-05093-2
James, J. et al. Between but not within-species variation in the distribution of fitness effects. Mol. Biol. Evol. 40, msad228 (2023).
pubmed: 37832225
pmcid: 10630145
doi: 10.1093/molbev/msad228
Rull, V. Quaternary ecology, evolution, and biogeography (Academic Press, 2020).
Eiserhardt, W. L., Borchsenius, F., Eiserhardt WL, B. F., Plum, C. M., Ordonez, A. & Svenning, J. C. Climate‐driven extinctions shape the phylogenetic structure of temperate tree floras. Ecol. Lett. 18, 263–272 (2015).
pubmed: 25604755
doi: 10.1111/ele.12409
Latham, R. E. & Ricklefs, R. E. Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos 67, 325–333 (1993).
doi: 10.2307/3545479
Svenning, J. C. Deterministic Plio‐Pleistocene extinctions in the European cool‐temperate tree flora. Ecol. Lett. 6, 646–653 (2003).
doi: 10.1046/j.1461-0248.2003.00477.x
Lamarque, L. J., Delzon, S. & Lortie, C. J. Tree invasions: a comparative test of the dominant hypotheses and functional traits. Biol. Invasions 13, 1969–1989 (2011).
doi: 10.1007/s10530-011-0015-x
Birks, H. J. B. Contributions of Quaternary botany to modern ecology and biogeography. Plant Ecol. Divers. 12, 189–385 (2019).
doi: 10.1080/17550874.2019.1646831
Petit, R. J. et al. Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For. Ecol. Manag. 156, 49–74 (2002).
doi: 10.1016/S0378-1127(01)00634-X
Magri, D. et al. A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. N. Phytol. 171, 199–221 (2006).
doi: 10.1111/j.1469-8137.2006.01740.x
Shalev, T. J. et al. The western redcedar genome reveals low genetic diversity in a self-compatible conifer. Genome Res. 32, 1952–1964 (2022).
pubmed: 36109148
pmcid: 9712635
Gugerli, F. et al. A range‐wide postglacial history of Swiss stone pine based on molecular markers and palaeoecological evidence. J. Biogeogr. 50, 1049–1062 (2023).
doi: 10.1111/jbi.14586
Whitham, T. G., Morrow, P. A. & Potts, B. M. Conservation of hybrid plants. Science 254, 5033 (1991).
doi: 10.1126/science.254.5033.779.c
Fu, R. et al. Genome-wide analyses of introgression between two sympatric Asian oak species. Nat. Ecol. Evol. 6, 924–935 (2022).
pubmed: 35513577
doi: 10.1038/s41559-022-01754-7
Petit, R. J., Bodénès, C., Ducousso, A., Roussel, G. & Kremer, A. Hybridization as a mechanism of invasion in oaks. N. Phytol. 161, 151–164 (2004).
doi: 10.1046/j.1469-8137.2003.00944.x
Suarez-Gonzalez, A., Lexer, C. & Cronk, Q. C. B. Adaptive introgression: a plant perspective. Biol. Lett. 14, 20170688 (2018).
Leroy, T. et al. Extensive recent secondary contacts between four European white oak species. N. Phytol. 214, 865–878 (2017).
doi: 10.1111/nph.14413
Magri, D. Patterns of post‐glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J. Biogeogr. 35, 450–463 (2008).
doi: 10.1111/j.1365-2699.2007.01803.x
Grivet, D. et al. High rate of adaptive evolution in two widespread European pines. Mol. Ecol. 26, 6857–6870 (2017).
pubmed: 29110402
doi: 10.1111/mec.14402
Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 1–14 (2015).
doi: 10.1186/s13059-015-0721-2
Ning, Z., Cox, A. J. & Mullikin, J. C. SSAHA: a fast search method for large DNA databases. Genome Res. 11, 1725–1729 (2001).
pubmed: 11591649
pmcid: 311141
doi: 10.1101/gr.194201
McKenna, A. et al. The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
doi: 10.14806/ej.17.1.200
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997 (2013).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
pubmed: 33590861
pmcid: 7931819
doi: 10.1093/gigascience/giab008
McKinney, G. J., Waples, R. K., Seeb, L. W. & Seeb, J. E. Paralogs are revealed by proportion of heterozygotes and deviations in read ratios in genotyping-by-sequencing data from natural populations. Mol. Ecol. Resour. 17, 656–669 (2017).
pubmed: 27762098
doi: 10.1111/1755-0998.12613
Carson, A. R. et al. Effective filtering strategies to improve data quality from population-based whole exome sequencing studies. BMC Bioinform. 15, 1–15 (2014).
doi: 10.1186/1471-2105-15-125
Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164–e164 (2010).
pubmed: 20601685
pmcid: 2938201
doi: 10.1093/nar/gkq603
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).
pubmed: 24204310
pmcid: 3812088
doi: 10.1371/journal.pgen.1003905
Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 12, 1–6 (2011).
doi: 10.1186/1471-2105-12-246
Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
pubmed: 28563791
Pembleton, L. W., Cogan, N. O. I. & Forster, J. W. St AMPP: an R package for calculation of genetic differentiation and structure of mixed‐ploidy level populations. Mol. Ecol. Resour. 13, 946–952 (2013).
pubmed: 23738873
doi: 10.1111/1755-0998.12129
Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).
pubmed: 24688859
pmcid: 3961149
doi: 10.7717/peerj.281
Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).
pubmed: 9093870
pmcid: 1207888
doi: 10.1093/genetics/145.4.1219
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
pubmed: 21653522
pmcid: 3137218
doi: 10.1093/bioinformatics/btr330
Hijmans R. J. Spherical Trigonometry, R package geosphere version 1.5–10. (2019).
Keinan, A. & Clark, A. G. Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336, 740–743 (2012).
pubmed: 22582263
pmcid: 3586590
doi: 10.1126/science.1217283
Xie, Z. et al. Mutation rate analysis via parent–progeny sequencing of the perennial peach. I. A low rate in woody perennials and a higher mutagenicity in hybrids. Proc. R. Soc. B: Biol. Sci. 283, 20161016 (2016).
doi: 10.1098/rspb.2016.1016
Ossowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).
pubmed: 20044577
doi: 10.1126/science.1180677
Krasovec, M., Chester, M., Ridout, K. & Filatov, D. A. The mutation rate and the age of the sex chromosomes in Silene latifolia. Curr. Biol. 28, 1832–1838.e4 (2018).
pubmed: 29804812
doi: 10.1016/j.cub.2018.04.069
Hanlon, V. C. T., Otto, S. P. & Aitken, S. N. Somatic mutations substantially increase the per-generation mutation rate in the conifer Picea sitchensis. Evol. Lett. 3, 348–358 (2019).
pubmed: 31388445
pmcid: 6675141
doi: 10.1002/evl3.121
Willyard, A., Syring, J., Gernandt, D. S., Liston, A. & Cronn, R. Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus. Mol. Biol. Evol. 24, 90–101 (2007).
pubmed: 16997907
doi: 10.1093/molbev/msl131
Pyhäjärvi, T. et al. Gene sequence variation data for 3407 adult individuals from 164 range-wide populations of 7 widely distributed European forest tree species, https://doi.org/10.57745/DV2X0M (2023).
PyhaTanja et al. GenTree-h2020-eu/GenTree: GenTree - Milesi et al. 2023 v1.0 (v1.0), https://zenodo.org/records/7943876 (2023).
Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological data for the main European woody species. Mendeley Data V18, https://data.mendeley.com/datasets/hr5h2hcgg4/18 (2024).
Lapierre, M., Lambert, A. & Achaz, G. Accuracy of demographic inferences from the site frequency spectrum: the case of the Yoruba population. Genetics 206, 439–449 (2017).
pubmed: 28341655
pmcid: 5419487
doi: 10.1534/genetics.116.192708
Nawa, N. & Tajima, F. Simple method for analyzing the pattern of DNA polymorphism and its application to SNP data of human. Genes Genet. Syst. 83, 353–360 (2008).
pubmed: 18931461
doi: 10.1266/ggs.83.353
Achaz, G. Frequency spectrum neutrality tests: one for all and all for one. Genetics 183, 249–258 (2009).
pubmed: 19546320
pmcid: 2746149
doi: 10.1534/genetics.109.104042