Microbial community acclimation during anaerobic digestion of high-oil food waste.
Anaerobiosis
Methane
/ metabolism
Sewage
/ microbiology
Microbiota
RNA, Ribosomal, 16S
/ genetics
Bacteria
/ classification
Fatty Acids, Volatile
/ metabolism
High-Throughput Nucleotide Sequencing
Acclimatization
Food
Archaea
/ metabolism
Oils
/ metabolism
Biodegradation, Environmental
Food Loss and Waste
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 Oct 2024
25 Oct 2024
Historique:
received:
09
07
2024
accepted:
21
10
2024
medline:
26
10
2024
pubmed:
26
10
2024
entrez:
25
10
2024
Statut:
epublish
Résumé
Anaerobic digestion is one of the most promising options for the disposal of biodegradable food waste. However, the relatively high content of oil in food waste inhibits the conversion efficiency of anaerobic digestion because of the accumulation of long-chain fatty acids (LCFAs). In this study, activated anaerobic sludge was acclimated to accommodate high-oil conditions. The methane yield of high-oil food waste digested by the acclimated sludge increased by 24.9% compared to that digested by the raw sludge. To determine the internal changes in the acclimated sludge, the shifts in the microbial communities during the acclimation period were investigated via high-throughput sequencing (HTS) based on the 16 S rRNA gene. The results indicated that Bacteroidetes, Firmicutes, Chloroflexi and Proteobacteria were the dominant bacteria at the phylum level. The acclimation time allows some functional bacterial taxa to proliferate, such as Clostridium and Longilinea, which are able to degrade LCFAs and turn them into small organic molecules that also have nutrient value for other bacteria. Among the archaeal communities, the hydrogenotrophic methanogen Methanobacterium nearly supplanted the acetotrophic methanogen Methanosaeta. The time profiles of volatile fatty acids (VFAs) and pH during this period provided additional evidence for the success of the acclimation. This study demonstrated the effectiveness of acclimation and the dynamic of microbial communities, which further contributed to the management and resource utilization of high-oil food waste.
Identifiants
pubmed: 39455737
doi: 10.1038/s41598-024-77136-9
pii: 10.1038/s41598-024-77136-9
doi:
Substances chimiques
Methane
OP0UW79H66
Sewage
0
RNA, Ribosomal, 16S
0
Fatty Acids, Volatile
0
Oils
0
Food Loss and Waste
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
25364Informations de copyright
© 2024. The Author(s).
Références
Choe, C., Cheon, S., Gu, J. & Lim, H. Critical aspect of renewable syngas production for power-to-fuel via solid oxide electrolysis: integrative assessment for potential renewable energy source. Renew. Sustain. Energy Rev. 161, 112398 (2022).
doi: 10.1016/j.rser.2022.112398
Sinha, S. & Tripathi, P. Trends and challenges in valorisation of food waste in developing economies: a case study of India. Case Stud. Chem. Environ. Eng. 4, 100162 (2021).
doi: 10.1016/j.cscee.2021.100162
Zhu, L. et al. Strategy to enhance semi-continuous anaerobic digestion of food waste by combined use of calcium peroxide and magnetite. Water Res. 221, 118801 (2022).
pubmed: 35810635
doi: 10.1016/j.watres.2022.118801
Ashokkumar, V. et al. Advanced technologies on the sustainable approaches for conversion of organic waste to valuable bioproducts: emerging circular bioeconomy perspective. Fuel. 324, 124313 (2022).
doi: 10.1016/j.fuel.2022.124313
Zhao, J., Li, Y. & Euverink, G. J. W. Effect of bioaugmentation combined with activated charcoal on the mitigation of volatile fatty acids inhibition during anaerobic digestion. Chem. Eng. J. 428, 131015 (2022).
doi: 10.1016/j.cej.2021.131015
Wang, Z., Wang, T., Si, B., Watson, J. & Zhang, Y. Accelerating anaerobic digestion for methane production: potential role of direct interspecies electron transfer. Renew. Sustain. Energy Rev. 145, 111069 (2021).
doi: 10.1016/j.rser.2021.111069
Wang, X. et al. Status quo, problems and countermeasures faced by China’s food waste management under the background of Zero Waste City construction. Environ. Sanitation Eng. 27(6), 1–10 (2019).
Kang, D. et al. Dual-stage pulse-feed operation enhanced methanation of lipidic waste during co-digestion using acclimatized consortia. Renew. Sustain. Energy Rev. 145, 111096 (2021).
doi: 10.1016/j.rser.2021.111096
Jeganathan, J., Nakhla, G. & Bassi, A. Long-term performance of high-rate anaerobic reactors for the treatment of oily Wastewater. Environ. Sci. Technol. 40, 6466–6472 (2006).
pubmed: 17120582
doi: 10.1021/es061071m
Salama, E. S. et al. Recent trends in anaerobic co-digestion: Fat, oil, and grease (FOG) for enhanced biomethanation. Prog. Energy Combust. Sci. 70, 22–42 (2019).
doi: 10.1016/j.pecs.2018.08.002
Palatsi, J. et al. Influence of adsorption and anaerobic granular sludge characteristics on long chain fatty acids inhibition process. Water Res. 46, 5268–5278 (2012).
pubmed: 22841596
doi: 10.1016/j.watres.2012.07.008
Palatsi, J. et al. Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors. Bioresour. Technol. 100, 4588–4596 (2009).
pubmed: 19473835
doi: 10.1016/j.biortech.2009.04.046
Duan, J. L. et al. Single bubble probe atomic force microscope and impinging-jet technique unravel the interfacial interactions controlled by long chain fatty acid in anaerobic digestion. Water Res. 231, 119657 (2023).
pubmed: 36709568
doi: 10.1016/j.watres.2023.119657
Ren, Y. et al. System stability associated with different lipid contents during mesophilic anaerobic digestion of lipid-rich food waste. J. Clean. Prod. 443, 141171 (2024).
doi: 10.1016/j.jclepro.2024.141171
Wu, L. J., Hao, Z. W., Ye, F., Yang, F. & Lyu, Y. K. Oil in food waste to methane by anaerobic digestion: co-effects of mixing intensity and long chain fatty acid loading. Process Saf. Environ. Prot. 190, 598–605 (2024).
doi: 10.1016/j.psep.2024.08.085
Wang, L. & Aziz, T. N. De Los Reyes, F. L. determining the limits of anaerobic co-digestion of thickened waste activated sludge with grease interceptor waste. Water Res. 47, 3835–3844 (2013).
pubmed: 23648286
doi: 10.1016/j.watres.2013.04.003
Davidsson, Å., Lövstedt, C., la Cour Jansen, J., Gruvberger, C. & Aspegren, H. Co-digestion of grease trap sludge and sewage sludge. Waste Manage. 28, 986–992 (2008).
doi: 10.1016/j.wasman.2007.03.024
Nakasaki, K., Koyama, M., Maekawa, T. & Fujita, J. Changes in the microbial community during the acclimation process of anaerobic digestion for treatment of synthetic lipid-rich wastewater. J. Biotechnol. 306, 32–37 (2019).
pubmed: 31513836
doi: 10.1016/j.jbiotec.2019.09.003
Kurade, M. B. et al. Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane. Bioresour. Technol. 272, 351–359 (2019).
pubmed: 30384210
doi: 10.1016/j.biortech.2018.10.047
Fykse, E. M., Aarskaug, T., Madslien, E. H. & Dybwad, M. Microbial community structure in a full-scale anaerobic treatment plant during start-up and first year of operation revealed by high-throughput 16S rRNA gene amplicon sequencing. Bioresour. Technol. 222, 380–387 (2016).
pubmed: 27744163
doi: 10.1016/j.biortech.2016.09.118
Amha, Y. M., Sinha, P., Lagman, J., Gregori, M. & Smith, A. L. Elucidating microbial community adaptation to anaerobic co-digestion of fats, oils, and grease and food waste. Water Res. 123, 277–289 (2017).
pubmed: 28672212
doi: 10.1016/j.watres.2017.06.065
Ziels, R. M. et al. Microbial community adaptation influences long-chain fatty acid conversion during anaerobic codigestion of fats, oils, and grease with municipal sludge. Water Res. 103, 372–382 (2016).
pubmed: 27486949
doi: 10.1016/j.watres.2016.07.043
Patil, S. M. et al. Anaerobic co-digester microbiome during food waste valorization reveals Methanosaeta mediated methanogenesis with improved carbohydrate and lipid metabolism. Bioresour. Technol. 332, 125123 (2021).
pubmed: 33862385
doi: 10.1016/j.biortech.2021.125123
Basak, B. et al. Rapid recovery of methane yield in organic overloaded-failed anaerobic digesters through bioaugmentation with acclimatized microbial consortium. Sci. Total Environ. 764, 144219 (2021).
pubmed: 33421748
doi: 10.1016/j.scitotenv.2020.144219
Hu, Y., Wang, F. & Chi, Y. The evolution of microbial community during acclimation for high sodium food waste anaerobic digestion. Waste Biomass Valoriz. 11, 6057–6063 (2019).
doi: 10.1007/s12649-019-00851-2
Donoso-Bravo, A. & Fdz-Polanco, M. Anaerobic co-digestion of sewage sludge and grease trap: Assessment of enzyme addition. Process Biochem. 48, 936–940 (2013).
doi: 10.1016/j.procbio.2013.04.005
Association, A. P. H. Standard Methods for the Examination of Water and Wastewater;Franklin Classics, (2018).
Markou, G., Angelidaki, I. & Georgakakis, D. Carbohydrate-enriched cyanobacterial biomass as feedstock for bio-methane production through anaerobic digestion. Fuel. 111, 872–879 (2013).
doi: 10.1016/j.fuel.2013.04.013
Hao, J., de los Reyes, I. I. I., He, X. & F. L. & Fat, oil, and grease (FOG) deposits yield higher methane than FOG in anaerobic co-digestion with waste activated sludge. J. Environ. Manage. 268, 110708 (2020).
pubmed: 32510442
doi: 10.1016/j.jenvman.2020.110708
Xu, F., Li, Y., Ge, X., Yang, L. & Li, Y. Anaerobic digestion of food waste – challenges and opportunities. Bioresour. Technol. 247, 1047–1058 (2018).
pubmed: 28965912
doi: 10.1016/j.biortech.2017.09.020
Pereira, M. A., Sousa, D. Z., Mota, M. & Alves, M. M. Mineralization of LCFA associated with anaerobic sludge: kinetics, enhancement of methanogenic activity, and effect of VFA. Biotechnol. Bioeng. 88, 502–511 (2004).
pubmed: 15459909
doi: 10.1002/bit.20278
Puig-Castellví, F. et al. Effect of ammonia exposure and acclimation on the performance and the microbiome of anaerobic digestion. Bioresource Technol. Rep. 11, 100488 (2020).
doi: 10.1016/j.biteb.2020.100488
Li, Y., Jin, Y., Borrion, A., Li, H. & Li, J. Effects of organic composition on mesophilic anaerobic digestion of food waste. Bioresour. Technol. 244, 213–224 (2017).
pubmed: 28779674
doi: 10.1016/j.biortech.2017.07.006
Valentino, F. et al. Enhancing volatile fatty acids (VFA) production from food waste in a two-phases pilot-scale anaerobic digestion process. J. Environ. Chem. Eng. 9, 106062 (2021).
doi: 10.1016/j.jece.2021.106062
Luo, J. et al. Alkyl polyglucose enhancing propionic acid enriched short-chain fatty acids production during anaerobic treatment of waste activated sludge and mechanisms. Water Res. 73, 332–341 (2015).
pubmed: 25697695
doi: 10.1016/j.watres.2015.01.041
Zhao, Z. et al. Why do DIETers like drinking: metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol. Water Res. 171, 115425 (2020).
pubmed: 31881499
doi: 10.1016/j.watres.2019.115425
Sousa, D. Z., Pereira, M. A., Smidt, H., Stams, A. J. M. & Alves, M. M. Molecular assessment of complex microbial communities degrading long chain fatty acids in methanogenic bioreactors. FEMS Microbiol. Ecol. 60, 252–265 (2007).
pubmed: 17374128
doi: 10.1111/j.1574-6941.2007.00291.x
Kougias, P. G., Treu, L., Campanaro, S., Zhu, X. & Angelidaki, I. Dynamic functional characterization and phylogenetic changes due to long chain fatty acids pulses in biogas reactors. Sci. Rep. 6, (2016).
Yamada, T. et al. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae Classis nov. and Caldilineae Classis nov. in the bacterial phylum Chloroflexi. Int. J. Syst. Evol. MicroBiol. 56, 1331–1340 (2006).
pubmed: 16738111
doi: 10.1099/ijs.0.64169-0
Shiratori, H. et al. Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int. J. Syst. Evol. MicroBiol. 59, 1764–1770 (2009).
pubmed: 19542130
doi: 10.1099/ijs.0.003483-0
Yamada, T. et al. Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int. J. Syst. Evol. MicroBiol. 57, 2299–2306 (2007).
pubmed: 17911301
doi: 10.1099/ijs.0.65098-0
van Houten, B. H. G. W. et al. Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res. 40, 553–560 (2006).
pubmed: 16427112
doi: 10.1016/j.watres.2005.12.004
Waite, D. W. et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int. J. Syst. Evol. MicroBiol. 70, 5972–6016 (2020).
pubmed: 33151140
doi: 10.1099/ijsem.0.004213
Liu, Y., Whitman, W. B. & Metabolic Phylogenetic, and ecological diversity of the Methanogenic Archaea. Ann. N. Y. Acad. Sci. 1125, 171–189 (2008).
pubmed: 18378594
doi: 10.1196/annals.1419.019
Smith, K. S. & Ingram-Smith, C. Methanosaeta, the forgotten methanogen? Trends Microbiol. 15, 150–155 (2007).
pubmed: 17320399
doi: 10.1016/j.tim.2007.02.002
Law, A. W. S. et al. Volatile fatty acid production from food waste: the effect of retention time and lipid content. Bioresour. Technol. 367, 128298 (2023).
pubmed: 36368484
doi: 10.1016/j.biortech.2022.128298
Liu, C., Li, H., Zhang, Y., Si, D. & Chen, Q. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresour. Technol. 216, 87–94 (2016).
pubmed: 27235970
doi: 10.1016/j.biortech.2016.05.048
Xiang, Y. et al. Metagenomic analysis reveals microbial metabolic potentials alterations under antibiotic stress during sludge anaerobic digestion. J. Environ. Chem. Eng. 11, 110746 (2023).
doi: 10.1016/j.jece.2023.110746