Atypical rhizobia trigger nodulation and pathogenesis on the same legume hosts.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
26 Oct 2024
Historique:
received: 12 10 2023
accepted: 09 10 2024
medline: 27 10 2024
pubmed: 27 10 2024
entrez: 27 10 2024
Statut: epublish

Résumé

The emergence of commensalism and mutualism often derives from ancestral parasitism. However, in the case of rhizobium-legume interactions, bacterial strains displaying both pathogenic and nodulation features on a single host have not been described yet. Here, we isolated such a bacterium from Medicago nodules. On the same plant genotypes, the T4 strain can induce ineffective nodules in a highly competitive way and behave as a harsh parasite triggering plant death. The T4 strain presents this dual ability on multiple legume species of the Inverted Repeat-Lacking Clade, the output of the interaction relying on the developmental stage of the plant. Genomic and phenotypic clustering analysis show that T4 belongs to the nonsymbiotic Ensifer adhaerens group and clusters together with T173, another strain harboring this dual ability. In this work, we identify a bacterial clade that includes rhizobial strains displaying both pathogenic and nodulating abilities on a single legume host.

Identifiants

pubmed: 39461961
doi: 10.1038/s41467-024-53388-x
pii: 10.1038/s41467-024-53388-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9246

Subventions

Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-LABX-41
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-11-IDEX-0002-02
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-21-CE20-0016-01-PATHOSYM
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-LABX-0040-SPS
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : EUR SPS-GSR
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-11-IDEX-0003-02

Informations de copyright

© 2024. The Author(s).

Références

Drew, G. C., Stevens, E. J. & King, K. C. Microbial evolution and transitions along the parasite-mutualist continuum. Nat. Rev. Microbiol 19, 623–638 (2021).
pubmed: 33875863 pmcid: 8054256 doi: 10.1038/s41579-021-00550-7
Liang, Y. et al. Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response. Science 341, 1384–1387 (2013).
pubmed: 24009356 doi: 10.1126/science.1242736
Nishiguchi, M. K. et al. Deciphering evolutionary mechanisms between mutualistic and pathogenic symbioses. Vie et. milieu 58, 87–106 (2008).
pubmed: 19655044
Sachs, J. L., Skophammer, R. G., Bansal, N. & Stajich, J. E. Evolutionary origins and diversification of proteobacterial mutualists. Proc. Biol. Sci. 281, 20132146 (2014).
pubmed: 24285193 pmcid: 3866395
Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in bacterial symbiosis. Proc. Natl Acad. Sci. USA 108, 10800–10807 (2011).
pubmed: 21690339 pmcid: 3131820 doi: 10.1073/pnas.1100304108
Zipfel, C. & Oldroyd, G. E. Plant signalling in symbiosis and immunity. Nature 543, 328–336 (2017).
pubmed: 28300100 doi: 10.1038/nature22009
Poole, P., Ramachandran, V. & Terpolilli, J. Rhizobia: from saprophytes to endosymbionts. Nat. Rev. Microbiol 16, 291–303 (2018).
pubmed: 29379215 doi: 10.1038/nrmicro.2017.171
Aslam, S. N. et al. Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr. Biol. 18, 1078–1083 (2008).
pubmed: 18639458 doi: 10.1016/j.cub.2008.06.061
Jones, K. M. et al. Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc. Natl Acad. Sci. USA 105, 704–709 (2008).
pubmed: 18184805 pmcid: 2206600 doi: 10.1073/pnas.0709338105
Okazaki, S., Kaneko, T., Sato, S. & Saeki, K. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc. Natl Acad. Sci. USA 110, 17131–17136 (2013).
pubmed: 24082124 pmcid: 3801068 doi: 10.1073/pnas.1302360110
Okazaki, S. et al. Rhizobium-legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS. ISME J. 10, 64–74 (2016).
pubmed: 26161635 doi: 10.1038/ismej.2015.103
Teulet, A. et al. The rhizobial type III effector ErnA confers the ability to form nodules in legumes. Proc. Natl Acad. Sci. USA 116, 21758–21768 (2019).
pubmed: 31591240 pmcid: 6815186 doi: 10.1073/pnas.1904456116
Brown, S. P., Grillo, M. A., Podowski, J. C. & Heath, K. D. Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula. Microbiome 8, 139 (2020).
pubmed: 32988416 pmcid: 7523075 doi: 10.1186/s40168-020-00915-9
Hansen, B. L. et al. Cooperation, Competition, and Specialized Metabolism in a Simplified Root Nodule Microbiome. mBio 11, https://doi.org/10.1128/mBio.01917-20 (2020).
Martínez-Hidalgo, P. & Hirsch, A. M. The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes 1, 70–82 (2017).
doi: 10.1094/PBIOMES-12-16-0019-RVW
Choi, I. S. et al. Plastid phylogenomics uncovers multiple species in Medicago truncatula (Fabaceae) germplasm accessions. Sci. Rep. 12, 21172 (2022).
pubmed: 36477422 pmcid: 9729603 doi: 10.1038/s41598-022-25381-1
Hoffmann, B., Trinh, T. H., Leung, J., Kondorosi, A. & Kondorosi, E. A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol. Plant Microbe Interact. 10, 307–315 (1997).
doi: 10.1094/MPMI.1997.10.3.307
Bromfield, E. S. P. et al. Ensifer, Phyllobacterium and Rhizobium species occupy nodules of Medicago sativa (alfalfa) and Melilotus alba (sweet clover) grown at a Canadian site without a history of cultivation. Microbiol. (Read.) 156, 505–520 (2010).
doi: 10.1099/mic.0.034058-0
Geddes, B. A. et al. Minimal gene set from Sinorhizobium (Ensifer) meliloti pSymA required for efficient symbiosis with Medicago. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2018015118 (2021).
Perez Guerra, J. C. et al. Comparison of developmental and stress-induced nodule senescence in Medicago truncatula. Plant Physiol. 152, 1574–1584 (2010).
pubmed: 20081044 pmcid: 2832273 doi: 10.1104/pp.109.151399
de Zelicourt, A. et al. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. Plant J. 70, 220–230 (2012).
pubmed: 22098255 doi: 10.1111/j.1365-313X.2011.04859.x
Gourion, B., Berrabah, F., Ratet, P. & Stacey, G. Rhizobium-legume symbioses: the crucial role of plant immunity. Trends Plant Sci. 20, 186–194 (2015).
pubmed: 25543258 doi: 10.1016/j.tplants.2014.11.008
Mergaert, P. et al. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc. Natl Acad. Sci. USA 103, 5230–5235 (2006).
pubmed: 16547129 pmcid: 1458823 doi: 10.1073/pnas.0600912103
Van de Velde, W. et al. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327, 1122–1126 (2010).
pubmed: 20185722 doi: 10.1126/science.1184057
Wang, D. et al. A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327, 1126–1129 (2010).
pubmed: 20185723 pmcid: 4824053 doi: 10.1126/science.1184096
Casida, L. E. Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil†. Int. J. Syst. Evolut. Microbiol. 32, 339–345 (1982).
Moreira, F. M. S., Gillis, M., Pot, B., Kersters, K. & Franco, A. A. Characterization of rhizobia isolated from different divergence groups of tropical leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. Syst. Appl. Microbiol. 16, 135–146 (1993).
doi: 10.1016/S0723-2020(11)80258-4
Munoz, E., Villadas, P. J. & Toro, N. Ectopic transposition of a group II intron in natural bacterial populations. Mol. Microbiol 41, 645–652 (2001).
pubmed: 11532132 doi: 10.1046/j.1365-2958.2001.02540.x
Willems, A. et al. Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an Opinion. Int. J. Syst. Evolut. Microbiol. 53, 1207–1217 (2003).
doi: 10.1099/ijs.0.02264-0
Wendt, T., Doohan, F. & Mullins, E. Production of Phytophthora infestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14. Transgenic Res 21, 567–578 (2012).
pubmed: 21912851 doi: 10.1007/s11248-011-9553-3
Rudder, S., Doohan, F., Creevey, C. J., Wendt, T. & Mullins, E. Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics 15, 268 (2014).
pubmed: 24708309 pmcid: 4051167 doi: 10.1186/1471-2164-15-268
Libourel, C. et al. Comparative phylotranscriptomics reveals ancestral and derived root nodule symbiosis programmes. Nat. Plants 9, 1067–1080 (2023).
pubmed: 37322127 pmcid: 10356618 doi: 10.1038/s41477-023-01441-w
Martinez, E., Palacios, R. & Sanchez, F. Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J. Bacteriol. 169, 2828–2834 (1987).
pubmed: 3584072 pmcid: 212195 doi: 10.1128/jb.169.6.2828-2834.1987
Marchetti, M. et al. Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol. 8, e1000280 (2010).
pubmed: 20084095 pmcid: 2796954 doi: 10.1371/journal.pbio.1000280
Cummings, S. P. et al. Nodulation of Sesbania species by Rhizobium (Agrobacterium) strain IRBG74 and other rhizobia. Environ. Microbiol 11, 2510–2525 (2009).
pubmed: 19555380 pmcid: 7163632 doi: 10.1111/j.1462-2920.2009.01975.x
Fagorzi, C. et al. Symbiotic and nonsymbiotic members of the genus ensifer (syn. sinorhizobium) are separated into two clades based on comparative genomics and high-throughput phenotyping. Genome Biol. Evol. 12, 2521–2534 (2020).
pubmed: 33283865 pmcid: 7719227 doi: 10.1093/gbe/evaa221
Kuzmanovic, N., Fagorzi, C., Mengoni, A., Lassalle, F. & diCenzo, G. C. Taxonomy of Rhizobiaceae revisited: proposal of a new framework for genus delimitation. Int. J. Syst. Evol. Microbiol. 72, https://doi.org/10.1099/ijsem.0.005243 (2022).
Bromfield, E. S. P., Cloutier, S. & Hynes, M. F. Ensifer canadensis sp. nov. strain T173(T) isolated from Melilotus albus (sweet clover) in Canada possesses recombinant plasmid pT173b harbouring symbiosis and type IV secretion system genes apparently acquired from Ensifer medicae. Front Microbiol 14, 1195755 (2023).
pubmed: 37389331 pmcid: 10306167 doi: 10.3389/fmicb.2023.1195755
Griesmann, M. et al. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361, https://doi.org/10.1126/science.aat1743 (2018).
Gano-Cohen, K. A. et al. Interspecific conflict and the evolution of ineffective rhizobia. Ecol. Lett. 22, 914–924 (2019).
pubmed: 30887662 doi: 10.1111/ele.13247
Zgadzaj, R. et al. A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet 11, e1005280 (2015).
pubmed: 26042417 pmcid: 4456278 doi: 10.1371/journal.pgen.1005280
Checcucci, A. et al. Mixed nodule infection in Sinorhizobium meliloti-Medicago sativa symbiosis suggest the presence of cheating behavior. Front Plant Sci. 7, 835 (2016).
pubmed: 27379128 pmcid: 4904023 doi: 10.3389/fpls.2016.00835
Muresu, R. et al. Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol. 63, 383–400 (2008).
pubmed: 18194345 doi: 10.1111/j.1574-6941.2007.00424.x
Hofer, A. W. Methods for distinguishing between legume bacteria and their most common contaminant1. Agron. J. 27, 228–230 (1935).
doi: 10.2134/agronj1935.00021962002700030008x
Young, N. D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524 (2011).
pubmed: 22089132 pmcid: 3272368 doi: 10.1038/nature10625
Journet, E.-P. et al. Medicago truncatula ENOD11: A novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol. Plant-Microbe Interact. 14, 737–748 (2001).
pubmed: 11386369 doi: 10.1094/MPMI.2001.14.6.737
Ehrhardt, D. W., Atkinson, E. M. & Long, S. R. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256, 998–1000 (1992).
pubmed: 10744524 doi: 10.1126/science.10744524
Krall, L. et al. Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc. Natl Acad. Sci. USA 99, 11405–11410 (2002).
pubmed: 12177443 pmcid: 123269 doi: 10.1073/pnas.172390699
Crotti, E. et al. Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environ. Microbiol 11, 3252–3264 (2009).
pubmed: 19735280 doi: 10.1111/j.1462-2920.2009.02048.x
Koch, B., Jensen, L. E. & Nybroe, O. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J. Microbiol Methods 45, 187–195 (2001).
pubmed: 11348676 doi: 10.1016/S0167-7012(01)00246-9
Simon, R., Priefer, U. & Pühler, A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technol. 1, 784–791 (1983).
doi: 10.1038/nbt1183-784
Bao, Y., Lies, D. P., Fu, H. & Roberts, G. P. An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. Gene 109, 167–168 (1991).
pubmed: 1661697 doi: 10.1016/0378-1119(91)90604-A
Finan, T. M., Kunkel, B., De Vos, G. F. & Signer, E. R. Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J. Bacteriol. 167, 66–72 (1986).
pubmed: 3013840 pmcid: 212841 doi: 10.1128/jb.167.1.66-72.1986
Quandt, J. & Hynes, M. F. Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127, 15–21 (1993).
pubmed: 8486283 doi: 10.1016/0378-1119(93)90611-6
Figurski, D. H. & Helinski, D. R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl Acad. Sci. USA 76, 1648–1652 (1979).
pubmed: 377280 pmcid: 383447 doi: 10.1073/pnas.76.4.1648
Koch, B. & Evans, H. J. Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol. 41, 1748–1750 (1966).
pubmed: 16656468 pmcid: 550603 doi: 10.1104/pp.41.10.1748
Pichon, M. et al. Rhizobium meliloti elicits transient expression of the early nodulin gene ENOD12 in the differentiating root epidermis of transgenic alfalfa. Plant Cell 4, 1199–1211 (1992).
pubmed: 1446169 pmcid: 160208
Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).
pubmed: 30936562 doi: 10.1038/s41587-019-0072-8
Krumsiek, J., Arnold, R. & Rattei, T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23, 1026–1028 (2007).
pubmed: 17309896 doi: 10.1093/bioinformatics/btm039
Luo, H., Zhang, C. T. & Gao, F. Ori-Finder 2, an integrated tool to predict replication origins in the archaeal genomes. Front Microbiol 5, 482 (2014).
pubmed: 25309521 pmcid: 4164010 doi: 10.3389/fmicb.2014.00482
Vallenet, D. et al. MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis. Nucleic Acids Res. 48, D579–D589 (2019).
pmcid: 7145621
Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).
pubmed: 8336541
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
pubmed: 29722887 pmcid: 5967553 doi: 10.1093/molbev/msy096
Vaas, L. A. et al. opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics 29, 1823–1824 (2013).
pubmed: 23740744 doi: 10.1093/bioinformatics/btt291

Auteurs

Kévin Magne (K)

Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France.

Sophie Massot (S)

Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.

Tifaine Folletti (T)

Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France.

Laurent Sauviac (L)

Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France.

Elhosseyn Ait-Salem (E)

Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.

Ilona Pires (I)

Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.

Maged M Saad (MM)

DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.

Abdul Aziz Eida (AA)

DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.

Salim Bougouffa (S)

Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

Adrien Jugan (A)

Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.

Eleonora Rolli (E)

Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133, Milan, Italy.

Raphaël Forquet (R)

iMEAN, 31077, Toulouse, France.

Virginie Puech-Pages (V)

Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Toulouse INP, Université de Toulouse, Toulouse, France.
Metatoul-AgromiX Platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, LRSV, Toulouse, France.

Fabienne Maillet (F)

Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France.

Gautier Bernal (G)

Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.

Chrystel Gibelin (C)

Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France.

Heribert Hirt (H)

DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.

Véronique Gruber (V)

Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.

Rémi Peyraud (R)

iMEAN, 31077, Toulouse, France.

Fabienne Vailleau (F)

Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France.

Benjamin Gourion (B)

Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France. benjamin.gourion@cnrs.fr.

Pascal Ratet (P)

Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France. pascal.ratet@cnrs.fr.
Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France. pascal.ratet@cnrs.fr.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH