Atypical rhizobia trigger nodulation and pathogenesis on the same legume hosts.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
26 Oct 2024
26 Oct 2024
Historique:
received:
12
10
2023
accepted:
09
10
2024
medline:
27
10
2024
pubmed:
27
10
2024
entrez:
27
10
2024
Statut:
epublish
Résumé
The emergence of commensalism and mutualism often derives from ancestral parasitism. However, in the case of rhizobium-legume interactions, bacterial strains displaying both pathogenic and nodulation features on a single host have not been described yet. Here, we isolated such a bacterium from Medicago nodules. On the same plant genotypes, the T4 strain can induce ineffective nodules in a highly competitive way and behave as a harsh parasite triggering plant death. The T4 strain presents this dual ability on multiple legume species of the Inverted Repeat-Lacking Clade, the output of the interaction relying on the developmental stage of the plant. Genomic and phenotypic clustering analysis show that T4 belongs to the nonsymbiotic Ensifer adhaerens group and clusters together with T173, another strain harboring this dual ability. In this work, we identify a bacterial clade that includes rhizobial strains displaying both pathogenic and nodulating abilities on a single legume host.
Identifiants
pubmed: 39461961
doi: 10.1038/s41467-024-53388-x
pii: 10.1038/s41467-024-53388-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9246Subventions
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-LABX-41
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-11-IDEX-0002-02
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-21-CE20-0016-01-PATHOSYM
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-LABX-0040-SPS
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : EUR SPS-GSR
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-11-IDEX-0003-02
Informations de copyright
© 2024. The Author(s).
Références
Drew, G. C., Stevens, E. J. & King, K. C. Microbial evolution and transitions along the parasite-mutualist continuum. Nat. Rev. Microbiol 19, 623–638 (2021).
pubmed: 33875863
pmcid: 8054256
doi: 10.1038/s41579-021-00550-7
Liang, Y. et al. Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response. Science 341, 1384–1387 (2013).
pubmed: 24009356
doi: 10.1126/science.1242736
Nishiguchi, M. K. et al. Deciphering evolutionary mechanisms between mutualistic and pathogenic symbioses. Vie et. milieu 58, 87–106 (2008).
pubmed: 19655044
Sachs, J. L., Skophammer, R. G., Bansal, N. & Stajich, J. E. Evolutionary origins and diversification of proteobacterial mutualists. Proc. Biol. Sci. 281, 20132146 (2014).
pubmed: 24285193
pmcid: 3866395
Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in bacterial symbiosis. Proc. Natl Acad. Sci. USA 108, 10800–10807 (2011).
pubmed: 21690339
pmcid: 3131820
doi: 10.1073/pnas.1100304108
Zipfel, C. & Oldroyd, G. E. Plant signalling in symbiosis and immunity. Nature 543, 328–336 (2017).
pubmed: 28300100
doi: 10.1038/nature22009
Poole, P., Ramachandran, V. & Terpolilli, J. Rhizobia: from saprophytes to endosymbionts. Nat. Rev. Microbiol 16, 291–303 (2018).
pubmed: 29379215
doi: 10.1038/nrmicro.2017.171
Aslam, S. N. et al. Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr. Biol. 18, 1078–1083 (2008).
pubmed: 18639458
doi: 10.1016/j.cub.2008.06.061
Jones, K. M. et al. Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc. Natl Acad. Sci. USA 105, 704–709 (2008).
pubmed: 18184805
pmcid: 2206600
doi: 10.1073/pnas.0709338105
Okazaki, S., Kaneko, T., Sato, S. & Saeki, K. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc. Natl Acad. Sci. USA 110, 17131–17136 (2013).
pubmed: 24082124
pmcid: 3801068
doi: 10.1073/pnas.1302360110
Okazaki, S. et al. Rhizobium-legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS. ISME J. 10, 64–74 (2016).
pubmed: 26161635
doi: 10.1038/ismej.2015.103
Teulet, A. et al. The rhizobial type III effector ErnA confers the ability to form nodules in legumes. Proc. Natl Acad. Sci. USA 116, 21758–21768 (2019).
pubmed: 31591240
pmcid: 6815186
doi: 10.1073/pnas.1904456116
Brown, S. P., Grillo, M. A., Podowski, J. C. & Heath, K. D. Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula. Microbiome 8, 139 (2020).
pubmed: 32988416
pmcid: 7523075
doi: 10.1186/s40168-020-00915-9
Hansen, B. L. et al. Cooperation, Competition, and Specialized Metabolism in a Simplified Root Nodule Microbiome. mBio 11, https://doi.org/10.1128/mBio.01917-20 (2020).
Martínez-Hidalgo, P. & Hirsch, A. M. The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes 1, 70–82 (2017).
doi: 10.1094/PBIOMES-12-16-0019-RVW
Choi, I. S. et al. Plastid phylogenomics uncovers multiple species in Medicago truncatula (Fabaceae) germplasm accessions. Sci. Rep. 12, 21172 (2022).
pubmed: 36477422
pmcid: 9729603
doi: 10.1038/s41598-022-25381-1
Hoffmann, B., Trinh, T. H., Leung, J., Kondorosi, A. & Kondorosi, E. A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol. Plant Microbe Interact. 10, 307–315 (1997).
doi: 10.1094/MPMI.1997.10.3.307
Bromfield, E. S. P. et al. Ensifer, Phyllobacterium and Rhizobium species occupy nodules of Medicago sativa (alfalfa) and Melilotus alba (sweet clover) grown at a Canadian site without a history of cultivation. Microbiol. (Read.) 156, 505–520 (2010).
doi: 10.1099/mic.0.034058-0
Geddes, B. A. et al. Minimal gene set from Sinorhizobium (Ensifer) meliloti pSymA required for efficient symbiosis with Medicago. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2018015118 (2021).
Perez Guerra, J. C. et al. Comparison of developmental and stress-induced nodule senescence in Medicago truncatula. Plant Physiol. 152, 1574–1584 (2010).
pubmed: 20081044
pmcid: 2832273
doi: 10.1104/pp.109.151399
de Zelicourt, A. et al. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. Plant J. 70, 220–230 (2012).
pubmed: 22098255
doi: 10.1111/j.1365-313X.2011.04859.x
Gourion, B., Berrabah, F., Ratet, P. & Stacey, G. Rhizobium-legume symbioses: the crucial role of plant immunity. Trends Plant Sci. 20, 186–194 (2015).
pubmed: 25543258
doi: 10.1016/j.tplants.2014.11.008
Mergaert, P. et al. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc. Natl Acad. Sci. USA 103, 5230–5235 (2006).
pubmed: 16547129
pmcid: 1458823
doi: 10.1073/pnas.0600912103
Van de Velde, W. et al. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327, 1122–1126 (2010).
pubmed: 20185722
doi: 10.1126/science.1184057
Wang, D. et al. A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327, 1126–1129 (2010).
pubmed: 20185723
pmcid: 4824053
doi: 10.1126/science.1184096
Casida, L. E. Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil†. Int. J. Syst. Evolut. Microbiol. 32, 339–345 (1982).
Moreira, F. M. S., Gillis, M., Pot, B., Kersters, K. & Franco, A. A. Characterization of rhizobia isolated from different divergence groups of tropical leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. Syst. Appl. Microbiol. 16, 135–146 (1993).
doi: 10.1016/S0723-2020(11)80258-4
Munoz, E., Villadas, P. J. & Toro, N. Ectopic transposition of a group II intron in natural bacterial populations. Mol. Microbiol 41, 645–652 (2001).
pubmed: 11532132
doi: 10.1046/j.1365-2958.2001.02540.x
Willems, A. et al. Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an Opinion. Int. J. Syst. Evolut. Microbiol. 53, 1207–1217 (2003).
doi: 10.1099/ijs.0.02264-0
Wendt, T., Doohan, F. & Mullins, E. Production of Phytophthora infestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14. Transgenic Res 21, 567–578 (2012).
pubmed: 21912851
doi: 10.1007/s11248-011-9553-3
Rudder, S., Doohan, F., Creevey, C. J., Wendt, T. & Mullins, E. Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics 15, 268 (2014).
pubmed: 24708309
pmcid: 4051167
doi: 10.1186/1471-2164-15-268
Libourel, C. et al. Comparative phylotranscriptomics reveals ancestral and derived root nodule symbiosis programmes. Nat. Plants 9, 1067–1080 (2023).
pubmed: 37322127
pmcid: 10356618
doi: 10.1038/s41477-023-01441-w
Martinez, E., Palacios, R. & Sanchez, F. Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J. Bacteriol. 169, 2828–2834 (1987).
pubmed: 3584072
pmcid: 212195
doi: 10.1128/jb.169.6.2828-2834.1987
Marchetti, M. et al. Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol. 8, e1000280 (2010).
pubmed: 20084095
pmcid: 2796954
doi: 10.1371/journal.pbio.1000280
Cummings, S. P. et al. Nodulation of Sesbania species by Rhizobium (Agrobacterium) strain IRBG74 and other rhizobia. Environ. Microbiol 11, 2510–2525 (2009).
pubmed: 19555380
pmcid: 7163632
doi: 10.1111/j.1462-2920.2009.01975.x
Fagorzi, C. et al. Symbiotic and nonsymbiotic members of the genus ensifer (syn. sinorhizobium) are separated into two clades based on comparative genomics and high-throughput phenotyping. Genome Biol. Evol. 12, 2521–2534 (2020).
pubmed: 33283865
pmcid: 7719227
doi: 10.1093/gbe/evaa221
Kuzmanovic, N., Fagorzi, C., Mengoni, A., Lassalle, F. & diCenzo, G. C. Taxonomy of Rhizobiaceae revisited: proposal of a new framework for genus delimitation. Int. J. Syst. Evol. Microbiol. 72, https://doi.org/10.1099/ijsem.0.005243 (2022).
Bromfield, E. S. P., Cloutier, S. & Hynes, M. F. Ensifer canadensis sp. nov. strain T173(T) isolated from Melilotus albus (sweet clover) in Canada possesses recombinant plasmid pT173b harbouring symbiosis and type IV secretion system genes apparently acquired from Ensifer medicae. Front Microbiol 14, 1195755 (2023).
pubmed: 37389331
pmcid: 10306167
doi: 10.3389/fmicb.2023.1195755
Griesmann, M. et al. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361, https://doi.org/10.1126/science.aat1743 (2018).
Gano-Cohen, K. A. et al. Interspecific conflict and the evolution of ineffective rhizobia. Ecol. Lett. 22, 914–924 (2019).
pubmed: 30887662
doi: 10.1111/ele.13247
Zgadzaj, R. et al. A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet 11, e1005280 (2015).
pubmed: 26042417
pmcid: 4456278
doi: 10.1371/journal.pgen.1005280
Checcucci, A. et al. Mixed nodule infection in Sinorhizobium meliloti-Medicago sativa symbiosis suggest the presence of cheating behavior. Front Plant Sci. 7, 835 (2016).
pubmed: 27379128
pmcid: 4904023
doi: 10.3389/fpls.2016.00835
Muresu, R. et al. Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol. 63, 383–400 (2008).
pubmed: 18194345
doi: 10.1111/j.1574-6941.2007.00424.x
Hofer, A. W. Methods for distinguishing between legume bacteria and their most common contaminant1. Agron. J. 27, 228–230 (1935).
doi: 10.2134/agronj1935.00021962002700030008x
Young, N. D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524 (2011).
pubmed: 22089132
pmcid: 3272368
doi: 10.1038/nature10625
Journet, E.-P. et al. Medicago truncatula ENOD11: A novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol. Plant-Microbe Interact. 14, 737–748 (2001).
pubmed: 11386369
doi: 10.1094/MPMI.2001.14.6.737
Ehrhardt, D. W., Atkinson, E. M. & Long, S. R. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256, 998–1000 (1992).
pubmed: 10744524
doi: 10.1126/science.10744524
Krall, L. et al. Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc. Natl Acad. Sci. USA 99, 11405–11410 (2002).
pubmed: 12177443
pmcid: 123269
doi: 10.1073/pnas.172390699
Crotti, E. et al. Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environ. Microbiol 11, 3252–3264 (2009).
pubmed: 19735280
doi: 10.1111/j.1462-2920.2009.02048.x
Koch, B., Jensen, L. E. & Nybroe, O. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J. Microbiol Methods 45, 187–195 (2001).
pubmed: 11348676
doi: 10.1016/S0167-7012(01)00246-9
Simon, R., Priefer, U. & Pühler, A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technol. 1, 784–791 (1983).
doi: 10.1038/nbt1183-784
Bao, Y., Lies, D. P., Fu, H. & Roberts, G. P. An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. Gene 109, 167–168 (1991).
pubmed: 1661697
doi: 10.1016/0378-1119(91)90604-A
Finan, T. M., Kunkel, B., De Vos, G. F. & Signer, E. R. Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J. Bacteriol. 167, 66–72 (1986).
pubmed: 3013840
pmcid: 212841
doi: 10.1128/jb.167.1.66-72.1986
Quandt, J. & Hynes, M. F. Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127, 15–21 (1993).
pubmed: 8486283
doi: 10.1016/0378-1119(93)90611-6
Figurski, D. H. & Helinski, D. R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl Acad. Sci. USA 76, 1648–1652 (1979).
pubmed: 377280
pmcid: 383447
doi: 10.1073/pnas.76.4.1648
Koch, B. & Evans, H. J. Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol. 41, 1748–1750 (1966).
pubmed: 16656468
pmcid: 550603
doi: 10.1104/pp.41.10.1748
Pichon, M. et al. Rhizobium meliloti elicits transient expression of the early nodulin gene ENOD12 in the differentiating root epidermis of transgenic alfalfa. Plant Cell 4, 1199–1211 (1992).
pubmed: 1446169
pmcid: 160208
Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).
pubmed: 30936562
doi: 10.1038/s41587-019-0072-8
Krumsiek, J., Arnold, R. & Rattei, T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23, 1026–1028 (2007).
pubmed: 17309896
doi: 10.1093/bioinformatics/btm039
Luo, H., Zhang, C. T. & Gao, F. Ori-Finder 2, an integrated tool to predict replication origins in the archaeal genomes. Front Microbiol 5, 482 (2014).
pubmed: 25309521
pmcid: 4164010
doi: 10.3389/fmicb.2014.00482
Vallenet, D. et al. MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis. Nucleic Acids Res. 48, D579–D589 (2019).
pmcid: 7145621
Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).
pubmed: 8336541
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
pubmed: 29722887
pmcid: 5967553
doi: 10.1093/molbev/msy096
Vaas, L. A. et al. opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics 29, 1823–1824 (2013).
pubmed: 23740744
doi: 10.1093/bioinformatics/btt291