Department of Neuromuscular Research, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan; Medical Genome Center, NCNP, Tokyo, Kodaira, Japan. Electronic address: nishino@ncnp.go.jp.
INSERM, GIN-U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, University Grenoble Alpes, Bat EJ Safra, Chemin Fortuné Ferrini, La Tronche, Grenoble, France.
INSERM, GIN-U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, University Grenoble Alpes, Bat EJ Safra, Chemin Fortuné Ferrini, La Tronche, Grenoble, France.
Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 187-8502 Tokyo, Japan; Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, 187-8551 Tokyo, Japan.
From the Department of Learning, Informatics and Medical Education, Karolinska Institutet; Function Area Occupational Therapy and Physical Therapy, Allied Health Professionals Function, Karolinska University Hospital, Department of Neurobiology, Care Science and Society, Division of Physiotherapy and Department of Medicine, Karolinska Institutet; Division of Rheumatology, Rheumatology Unit, Department of Medicine, Karolinska Institutet, Solna, Sweden; Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Division of Rheumatology, Department of Internal Medicine, Medical Research Center, College of Medicine, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea; Division of Rheumatology, Fiona Stanley Hospital, Institute for Immunology and Infectious Diseases, Murdoch University, Perth; The Notre Dame University Fremantle, Fremantle, Australia; Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands; Center for Global Health, University of Ottawa, Ottawa, Ontario, Canada.
M. Regardt, PhD, Occupational Therapist, Department of Learning, Informatics and Medical Education, Karolinska Institutet, and Function Area Occupational Therapy and Physical Therapy, Allied Health Professionals Function, Karolinska University Hospital; C.A. Mecoli, MD, Division of Rheumatology, Department of Medicine, Johns Hopkins University; J.K. Park, MD, PhD, Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital; I. de Groot, Patient Research Partner; C. Sarver, Patient Research Partner; M. Needham, MD, Division of Rheumatology, Fiona Stanley Hospital, Institute for Immunology and Infectious Diseases, Murdoch University, and The Notre Dame University; M. de Visser, MD, PhD, Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience; B. Shea, MSN, Center for Global Health, University of Ottawa; C.O. Bingham III, MD, Division of Rheumatology, Department of Medicine, Johns Hopkins University; I.E. Lundberg, MD, PhD, Division of Rheumatology, Rheumatology Unit, Department of Medicine, Karolinska Institutet; Y.W. Song, MD, PhD, Division of Rheumatology, Department of Internal Medicine, Medical Research Center, College of Medicine, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University; L. Christopher-Stine, MD, Division of Rheumatology, Department of Medicine, Johns Hopkins University; H. Alexanderson, PhD, Physiotherapist, Department of Neurobiology, Care Science and Society, Division of Physiotherapy and Department of Medicine Solna, Karolinska Institutet, and Function Area Occupational Therapy and Physical Therapy, Allied Health Professionals Function, Karolinska University Hospital. M. Regardt and Dr. C. Mecoli are co-first authors.
Department of Neuromuscular Research, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan; Medical Genome Center, NCNP, Tokyo, Kodaira, Japan; Department of Pediatrics, Showa General Hospital, Tokyo, Kodaira, Japan.
INSERM, GIN-U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, University Grenoble Alpes, Bat EJ Safra, Chemin Fortuné Ferrini, La Tronche, Grenoble, France.
INSERM, GIN-U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, University Grenoble Alpes, Bat EJ Safra, Chemin Fortuné Ferrini, La Tronche, Grenoble, France. isabelle.marty@univ-grenoble-alpes.fr.
Neuromuscular Morphology Unit, Myology Institute, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France. matteo.garibaldi@uniroma1.it.
Unit of Neuromuscular Diseases, Neuromuscular Disease Centre, Department of Neurology Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy. matteo.garibaldi@uniroma1.it.
Service Neurologie Médicale, Centre de Référence Maladies Neuromusculaire Paris-Est-Ile de France, CHU Raymond-Poincaré Paris Ouest, Garches, France.
U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR des sciences de la santé Simone Veil, Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France.
Unit of Neuromuscular Diseases, Neuromuscular Disease Centre, Department of Neurology Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy.
Platelet endothelial aggregation receptor 1 (PEAR1) is a single-transmembrane orphan receptor primarily expressed on platelets and endothelial cells. Genetic variants of PEAR1 have repeatedly and inde...
We have identified sulfated fucoidans and their mimetics as ligands for PEAR1 and proposed that its endogenous ligand is a sulfated proteoglycan. The aim of this study was to test this hypothesis....
A heparin proteoglycan-mimetic (HPGM) was created by linking unfractionated heparin (UFH) to albumin. The ability of the HPGM, UFH and selectively desulfated heparins to stimulate platelet aggregation...
We show that HPGM, heparin conjugated to an albumin protein core, stimulates aggregation and phosphorylation of PEAR1 in washed platelets. Platelet aggregation was abolished by an anti-PEAR1 nanobody,...
Our findings reveal that PEAR1 is a receptor for heparin and HPGM and that PI3Kβ is a key signaling molecule downstream of PEAR1 in platelets. These findings may have important implications for our un...
The extensive use of therapeutic doses of heparin to prevent thrombosis in critically ill patients with COVID-19 during the pandemic has led to an increased incidence of bleeding and heparin-induced t...
This article provides a comprehensive overview of Heparin-Induced Thrombocytopenia (HIT) with an emphasis on laboratory testing and advantages of automation. HIT is a critical condition arising from h...
The common conception of "heparin rebound" invokes heparin returning to circulation in the postoperative period after apparently adequate intraoperative reversal with protamine. This is believed to po...
Thrombosis in COVID-19 worsens mortality. In our study, we sought to investigate how the dose and type of anticoagulation (AC) can influence patient outcomes....
This is a single-center retrospective analysis of critically ill intubated patients with COVID-19, comparing low-molecular-weight heparin (LMWH) and unfractionated heparin (UFH) at therapeutic and pro...
Overall, therapeutic AC, with either LMWH (65% vs 79%, P = .09) or UFH (32% vs 46%, P = .73), conveyed no survival benefit over prophylactic AC. UFH was associated with a higher mortality rate than LM...
Among intubated critically ill COVID-19 intensive care unit patients, therapeutic AC, with either LMWH or UFH, conveyed no survival benefit over prophylactic AC. AC with LMWH was associated with highe...
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the...
Heparin, a sulfate-containing linear polysaccharide, has proven preclinical and clinical efficacy for a variety of disorders. Heparin, including unfractionated heparin (UFH), low-molecular-weight hepa...
We present a thermodynamic investigation of the interaction of heparin with lysozyme in the presence of potassium glutamate (KGlu). The binding constant...
To explore the difference in post-operative DVT, PE, and ICH complications following administration of prophylactic UFH or enoxaparin in patients undergoing craniotomy....
A retrospective chart review was conducted for 542 patients at our institution receiving either 5000units/0.5 mL UFH (BID or TID; 180 patients) or single daily 40 mg/0.4 mL enoxaparin (362 patients) f...
Patients receiving prophylactic enoxaparin, when compared to UFH, exhibited similar rates of postoperative DVT (22 % vs 20.6 %, p = 0.86), PE (9.7 % vs 8.9 %, p = 0.86), and reoperation for bleeding (...
In patients undergoing craniotomy, rates for DVT, PE, and ICH were similar between patients treated with either prophylactic enoxaparin or UFH. Further studies are needed to understand whether a certa...
Heparin is a commonly applied blood anticoagulant agent in clinical use. After treatment, excess heparin needs to be removed to circumvent side effects and recover the blood-clotting cascade. Most exi...