microRNA-146a-5p association with the cardiometabolic disease risk factor TMAO.
Animals
Atherosclerosis
/ genetics
Chlorocebus aethiops
Choline
/ metabolism
Cohort Studies
Collaborative Cross Mice
Diet, Atherogenic
Diet, High-Fat
Disease Models, Animal
Female
Gene Knockout Techniques
Hypercholesterolemia
/ genetics
Liver
/ metabolism
Methylamines
/ metabolism
Mice
Mice, Knockout
MicroRNAs
/ genetics
NF-kappa B
/ metabolism
RNA-Seq
Receptor, Insulin
/ genetics
Risk Factors
Diversity Outbred mice
TMAO
lipids
liver
miRNA
Journal
Physiological genomics
ISSN: 1531-2267
Titre abrégé: Physiol Genomics
Pays: United States
ID NLM: 9815683
Informations de publication
Date de publication:
01 02 2019
01 02 2019
Historique:
pubmed:
12
1
2019
medline:
27
2
2020
entrez:
12
1
2019
Statut:
ppublish
Résumé
Trimethylamine-N-oxide (TMAO), a microbial choline metabolism byproduct that is processed in the liver and excreted into circulation, is associated with increased atherosclerotic lesion formation and cardiovascular disease risk. Genetic regulators of TMAO levels are largely unknown. In the present study, we used 288 mice from a genetically heterogeneous mouse population [Diversity Outbred (DO)] to determine hepatic microRNA associations with TMAO in the context of an atherogenic diet. We also validated findings in two additional animal models of atherosclerosis: liver-specific insulin receptor knockout mice fed a chow diet (LIRKO) and African green monkeys fed high-fat/high-cholesterol diet. Small RNA-sequencing analysis in DO mice, LIRKO mice, and African green monkeys identified only one hepatic microRNA (miR-146a-5p) that is aberrantly expressed across all three models. Moreover, miR-146a-5p levels are associated with circulating TMAO after atherogenic diet in each of these models. We also performed high-resolution genetic mapping and identified a novel quantitative trait locus on Chromosome 12 for TMAO levels. This interval includes two genes, Numb and Dlst, which are inversely correlated with both miR-146a and TMAO and are predicted targets of miR-146a. Both of these genes have been validated as direct targets of miR-146a, though in other cellular contexts. This is the first report to our knowledge of a link between miR-146 and TMAO. Our findings suggest that miR-146-5p, as well as one or more genes at the Chromosome 12 QTL (possibly Numb or Dlst), is strongly linked to TMAO levels and likely involved in the control of atherosclerosis.
Identifiants
pubmed: 30633643
doi: 10.1152/physiolgenomics.00079.2018
pmc: PMC6397334
doi:
Substances chimiques
Methylamines
0
MicroRNAs
0
Mirn146 microRNA, mouse
0
NF-kappa B
0
Receptor, Insulin
EC 2.7.10.1
trimethyloxamine
FLD0K1SJ1A
Choline
N91BDP6H0X
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
59-71Subventions
Organisme : NIDDK NIH HHS
ID : P30 DK056350
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL128572
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL111932
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK105965
Pays : United States
Organisme : NHLBI NIH HHS
ID : R00 HL088528
Pays : United States
Références
J Biol Chem. 2014 Nov 28;289(48):33689-700
pubmed: 25331956
Arterioscler Thromb Vasc Biol. 2014 Sep;34(9):1880-7
pubmed: 24969772
Mamm Genome. 2014 Dec;25(11-12):583-99
pubmed: 25159725
Atherosclerosis. 2011 Nov;219(1):211-7
pubmed: 21820659
PLoS Genet. 2015 Dec 22;11(12):e1005711
pubmed: 26694027
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):562-567
pubmed: 28031488
Circ Res. 2017 Aug 4;121(4):354-367
pubmed: 28637783
Geriatr Gerontol Int. 2016 Mar;16(3):322-8
pubmed: 25727911
Lipids Health Dis. 2015 Sep 29;14:120
pubmed: 26415596
Physiol Genomics. 2017 Nov 1;49(11):618-629
pubmed: 28916633
Front Neurosci. 2012 Oct 04;6:145
pubmed: 23060745
Circulation. 2017 Aug 22;136(8):747-761
pubmed: 28611091
G3 (Bethesda). 2014 Sep 18;4(9):1623-33
pubmed: 25237114
Elife. 2014 Feb 18;3:e01460
pubmed: 24550252
Nat Commun. 2015 Apr 07;6:6498
pubmed: 25849138
Nat Med. 2014 Jan;20(1):80-6
pubmed: 24336247
Cell Metab. 2008 Feb;7(2):125-34
pubmed: 18249172
Arterioscler Thromb Vasc Biol. 2014 Jun;34(6):1307-13
pubmed: 24675659
Nat Cell Biol. 2014 Mar;16(3):268-80
pubmed: 24561623
Mamm Genome. 2012 Oct;23(9-10):713-8
pubmed: 22892839
Mol Cell. 2007 Jul 6;27(1):91-105
pubmed: 17612493
Genetics. 2001 Sep;159(1):371-87
pubmed: 11560912
Mol Biol Rep. 2014 Sep;41(9):5765-73
pubmed: 24928089
Circ Res. 2016 Feb 19;118(4):703-20
pubmed: 26892968
Blood. 2006 Jun 15;107(12):4807-16
pubmed: 16484589
Free Radic Biol Med. 2009 Oct 1;47(7):1019-27
pubmed: 19596066
J Biol Chem. 2015 Feb 27;290(9):5647-60
pubmed: 25550161
J Integr Bioinform. 2016 Dec 22;13(5):307
pubmed: 28187421
Brain. 1954 Dec;77(4):571-87
pubmed: 13230292
Curr Opin Lipidol. 2014 Feb;25(1):48-53
pubmed: 24362355
Cell Metab. 2013 Jan 8;17(1):49-60
pubmed: 23312283
Nat Genet. 1995 Nov;11(3):241-7
pubmed: 7581446
Anal Biochem. 2014 Jun 15;455:35-40
pubmed: 24704102
G3 (Bethesda). 2014 Oct 23;4(12):2353-63
pubmed: 25344410
Cell Metab. 2014 Nov 4;20(5):799-812
pubmed: 25440057
J Pathol. 2001 Feb;193(2):270-5
pubmed: 11180176
Sci Rep. 2015 Aug 05;5:12784
pubmed: 26244698
J Am Heart Assoc. 2016 Feb 22;5(2):
pubmed: 26903003
Nature. 2011 Apr 7;472(7341):57-63
pubmed: 21475195
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12481-6
pubmed: 16885212
Front Physiol. 2017 May 30;8:350
pubmed: 28611682
Nat Med. 2013 May;19(5):576-85
pubmed: 23563705
N Engl J Med. 2013 Apr 25;368(17):1575-84
pubmed: 23614584
Am J Clin Pathol. 2001 Feb;115(2):298-303
pubmed: 11211620
Elife. 2015 Aug 12;4:
pubmed: 26267216