OsDCL3b affects grain yield and quality in rice.
Crops, Agricultural
/ genetics
DNA Shuffling
Down-Regulation
Edible Grain
/ chemistry
Fertility
/ genetics
Gene Expression Regulation, Plant
/ genetics
Gene Knockdown Techniques
Genes, Plant
/ genetics
High-Throughput Nucleotide Sequencing
MicroRNAs
/ biosynthesis
Oryza
/ genetics
Phenotype
Plant Proteins
/ genetics
Quantitative Trait Loci
Seeds
/ genetics
Grain quality
Grain yield
OsDCL3b
Pollen fertility
Seed-setting rate
Small RNA
Journal
Plant molecular biology
ISSN: 1573-5028
Titre abrégé: Plant Mol Biol
Pays: Netherlands
ID NLM: 9106343
Informations de publication
Date de publication:
Feb 2019
Feb 2019
Historique:
received:
02
10
2018
accepted:
29
11
2018
pubmed:
18
1
2019
medline:
21
3
2019
entrez:
18
1
2019
Statut:
ppublish
Résumé
We reported that knockdown of OsDCL3b decreased grain yield but increased grain quality in rice, which is helpful for molecular breeding in crops. Multiple DICER-LIKE (DCL) genes usually exist and show diverse biochemical and phenotypic functions in land plants. In rice, the biochemical function of OsDCL3b is known to process 24-nucleotide panicle phased small RNAs, however, its phenotypic functions are unclear. Here we reported that knockdown of OsDCL3b led to reduced pollen fertility, seed setting rate, and decreased grain yield but increased grain quality in rice. To reveal the molecular mechanism of the above phenomena, extracted RNAs from rice panicles of the wild type (WT) and OsDCL3b-RNAi line S6-1 were analyzed by deep sequencing. It showed that knockdown of OsDCL3b affected the biogenesis of both 21- and 24-nucleotide small RNAs including miRNAs and phased small RNAs. Using RNA-seq, 644 up- and 530 down-regulated mRNA genes were identified in panicles of line S6-1, and 550 and 273 differentially spliced genes with various alternative splicing (AS) events were observed in panicles of line S6-1 and WT, respectively, suggesting that OsDCL3b involved in influencing the transcript levels of mRNA genes and the AS events in rice panicles. Thus, our results show that knockdown of OsDCL3b will affect the biogenesis of small RNAs, which is involved in regulating the transcription of mRNA genes, and consequently influence the grain yield and quality in rice.
Identifiants
pubmed: 30652247
doi: 10.1007/s11103-018-0806-x
pii: 10.1007/s11103-018-0806-x
doi:
Substances chimiques
MicroRNAs
0
Plant Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
193-204Subventions
Organisme : National Natural Science Foundation of China
ID : 31260313
Organisme : National Natural Science Foundation of China
ID : 31471426
Organisme : National Natural Science Foundation of China
ID : 31560383
Références
Curr Biol. 2002 Sep 3;12(17):1484-95
pubmed: 12225663
Trends Plant Sci. 2002 Nov;7(11):487-91
pubmed: 12417148
Science. 2003 Jul 18;301(5631):336-8
pubmed: 12869753
Cell. 2004 Jan 23;116(2):281-97
pubmed: 14744438
PLoS Biol. 2004 May;2(5):E104
pubmed: 15024409
Cell. 2004 Apr 2;117(1):69-81
pubmed: 15066283
Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12753-8
pubmed: 15314213
Trends Biochem Sci. 2005 Feb;30(2):106-14
pubmed: 15691656
Curr Biol. 2005 Aug 23;15(16):1494-500
pubmed: 16040244
Plant Physiol. 2005 Sep;139(1):296-305
pubmed: 16126864
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12984-9
pubmed: 16129836
Plant Cell. 2005 Oct;17(10):2705-22
pubmed: 16141453
Nucleic Acids Res. 2005 Nov 27;33(20):e179
pubmed: 16314309
Cell Res. 2005 Nov-Dec;15(11-12):935-46
pubmed: 16354572
Cell. 2005 Dec 29;123(7):1279-91
pubmed: 16377568
FEBS Lett. 2006 May 1;580(10):2442-50
pubmed: 16638569
Nat Genet. 2006 Jun;38(6):721-5
pubmed: 16699516
EMBO J. 2006 Jul 26;25(14):3347-56
pubmed: 16810317
PLoS Biol. 2007 Mar;5(3):e57
pubmed: 17298187
Genetics. 2007 Jun;176(2):1359-62
pubmed: 17579240
Plant Cell. 2007 Sep;19(9):2705-18
pubmed: 17905898
Plant Physiol. 2007 Dec;145(4):1577-87
pubmed: 17951452
Trends Plant Sci. 2008 Jul;13(7):368-74
pubmed: 18501663
PLoS Comput Biol. 2008 Aug 08;4(8):e1000147
pubmed: 18688268
BMC Genomics. 2008 Oct 01;9:451
pubmed: 18826656
Plant Cell. 2008 Dec;20(12):3186-90
pubmed: 19074682
Cell. 2009 Feb 6;136(3):461-72
pubmed: 19203581
Genome Res. 2009 Aug;19(8):1429-40
pubmed: 19584097
Plant Cell Physiol. 2010 Jan;51(1):58-67
pubmed: 19933266
Plant Cell. 2010 Jan;22(1):173-90
pubmed: 20086189
Genes Dev. 2010 Apr 1;24(7):653-8
pubmed: 20299448
Mol Cell. 2010 May 14;38(3):465-75
pubmed: 20381393
Genes Dev. 2010 May 15;24(10):1010-21
pubmed: 20478994
Plant Physiol. 2010 Sep;154(1):149-62
pubmed: 20610705
Plant Cell. 2011 Jun;23(6):2225-46
pubmed: 21705642
Plant J. 2012 Feb;69(3):462-74
pubmed: 21973320
Brief Bioinform. 2013 Mar;14(2):178-92
pubmed: 22517427
Physiol Plant. 2013 Sep;149(1):13-24
pubmed: 23231646
Curr Opin Plant Biol. 2013 May;16(2):170-9
pubmed: 23466255
Nat Biotechnol. 2013 Sep;31(9):848-52
pubmed: 23873084
Plant Cell. 2013 Oct;25(10):3640-56
pubmed: 24179132
Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3877-82
pubmed: 24554078
Plant J. 2015 Jan;81(2):223-32
pubmed: 25376953
Annu Rev Biochem. 2015;84:291-323
pubmed: 25784052
Plant J. 2015 Nov;84(3):527-44
pubmed: 26360816
Nat Commun. 2015 Sep 25;6:8139
pubmed: 26404089
Plant J. 2016 Aug;87(3):305-17
pubmed: 27133784
Nat Commun. 2016 Jun 24;7:11708
pubmed: 27339440
J Exp Bot. 2016 Nov;67(21):6037-6049
pubmed: 27702997
Plant J. 2017 Apr;90(1):133-146
pubmed: 28106309
Plant J. 2017 Jun;90(6):1064-1078
pubmed: 28267232
Nat Plants. 2017 Jun 30;3:17077
pubmed: 28665396
PLoS Genet. 2018 Feb 12;14(2):e1007238
pubmed: 29432414