GPT2 mutations in autosomal recessive developmental disability: extending the clinical phenotype and population prevalence estimates.
Adolescent
Alleles
Amino Acid Substitution
Developmental Disabilities
/ diagnosis
Enzyme Activation
Exons
Female
Gene Frequency
Genes, Recessive
Genetic Association Studies
Genetic Predisposition to Disease
Genetics, Population
Genotype
Humans
Intellectual Disability
/ diagnosis
Magnetic Resonance Imaging
Male
Mitochondria
/ genetics
Models, Molecular
Mutation
Pedigree
Phenotype
Protein Conformation
RNA Splice Sites
Sequence Analysis, DNA
Structure-Activity Relationship
Transaminases
/ chemistry
Journal
Human genetics
ISSN: 1432-1203
Titre abrégé: Hum Genet
Pays: Germany
ID NLM: 7613873
Informations de publication
Date de publication:
Oct 2019
Oct 2019
Historique:
received:
14
05
2019
accepted:
24
08
2019
pubmed:
1
9
2019
medline:
1
10
2019
entrez:
1
9
2019
Statut:
ppublish
Résumé
The glutamate pyruvate transaminase 2 (GPT2) gene produces a nuclear-encoded mitochondrial enzyme that catalyzes the reversible transfer of an amino group from glutamate to pyruvate, generating alanine and alpha-ketoglutarate. Recessive mutations in GPT2 have been recently identified in a new syndrome involving intellectual and developmental disability (IDD), postnatal microcephaly, and spastic paraplegia. We have identified additional families with recessive GPT2 mutations and expanded the phenotype to include small stature. GPT2 loss-of-function mutations were identified in four families, nine patients total, including: a homozygous mutation in one child [c.775T>C (p.C259R)]; compound heterozygous mutations in two siblings [c.812A>C (p.N271T)/c.1432_1433delGT (p.V478Rfs*73)]; a novel homozygous, putative splicing mutation [c.1035C>T (p.G345=)]; and finally, a recurrent mutation, previously identified in a distinct family [c.1210C>T (p.R404*)]. All patients were diagnosed with IDD. A majority of patients had remarkably small stature throughout development, many < 1st percentile for height and weight. Given the potential biological function of GPT2 in cellular growth, this phenotype is strongly suggestive of a newly identified clinical susceptibility. Further, homozygous GPT2 mutations manifested in at least 2 of 176 families with IDD (approximately 1.1%) in a Pakistani cohort, thereby representing a relatively common cause of recessive IDD in this population, with recurrence of the p.R404* mutation in this population. Based on variants in the ExAC database, we estimated that approximately 1 in 248 individuals are carriers of moderately or severely deleterious variants in GPT2.
Identifiants
pubmed: 31471722
doi: 10.1007/s00439-019-02057-x
pii: 10.1007/s00439-019-02057-x
pmc: PMC6748651
mid: NIHMS1538581
doi:
Substances chimiques
RNA Splice Sites
0
GPT2 protein, human
EC 2.6.1.-
Transaminases
EC 2.6.1.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1183-1200Subventions
Organisme : NINDS NIH HHS
ID : R01 NS113141
Pays : United States
Organisme : NIMH NIH HHS
ID : R01MH102418
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH102418
Pays : United States
Organisme : NIMH NIH HHS
ID : R01MH105442
Pays : United States
Organisme : CIHR
ID : MOP-102758
Pays : Canada
Organisme : CIHR
ID : PJT-156402
Pays : Canada
Organisme : NIMH NIH HHS
ID : R01 MH105442
Pays : United States
Références
Nucleic Acids Res. 2000 Jan 1;28(1):235-42
pubmed: 10592235
Genomics. 2002 Mar;79(3):445-50
pubmed: 11863375
J Biol Chem. 2002 Aug 23;277(34):30409-12
pubmed: 12087111
MMWR Morb Mortal Wkly Rep. 2004 Jan 30;53(3):57-9
pubmed: 14749614
Bioinformatics. 2010 Mar 1;26(5):689-91
pubmed: 20061306
Nucleic Acids Res. 2010 Sep;38(16):e164
pubmed: 20601685
Nucleic Acids Res. 2011 Jan;39(Database issue):D38-51
pubmed: 21097890
PLoS One. 2013 May 22;8(5):e63906
pubmed: 23717507
Genet Med. 2014 Dec;16(12):922-31
pubmed: 24901346
JAMA. 2014 Nov 12;312(18):1880-7
pubmed: 25326637
J Inherit Metab Dis. 2015 Sep;38(5):941-8
pubmed: 25758935
PLoS One. 2015 Jul 24;10(7):e0132508
pubmed: 26207742
Semin Perinatol. 2016 Feb;40(1):23-8
pubmed: 26706396
Clin Genet. 2016 Jun;89(6):700-7
pubmed: 26757139
Oncotarget. 2016 Mar 15;7(11):12464-76
pubmed: 26824323
BMC Med Genomics. 2016 Feb 04;9:7
pubmed: 26846091
Genes Dev. 2016 Jun 1;30(11):1255-60
pubmed: 27298334
Nat Commun. 2016 Jun 20;7:11971
pubmed: 27321283
Nature. 2016 Aug 17;536(7616):285-91
pubmed: 27535533
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):E5598-607
pubmed: 27601654
Cell Rep. 2016 Oct 11;17(3):821-836
pubmed: 27732857
Nucleic Acids Res. 2017 Jan 4;45(D1):D200-D203
pubmed: 27899674
JIMD Rep. 2017;36:59-66
pubmed: 28130718
Mol Psychiatry. 2018 Apr;23(4):973-984
pubmed: 28397838
Theranostics. 2017 Jul 22;7(12):3021-3033
pubmed: 28839461
Protein Sci. 2018 Jan;27(1):259-268
pubmed: 28960691
Genet Med. 2018 Jun;20(6):645-654
pubmed: 29095811
Am J Med Genet A. 2018 Feb;176(2):421-425
pubmed: 29226631
Clin Genet. 2018 Oct;94(3-4):356-361
pubmed: 29882329
Genes Dis. 2016 Sep 10;3(4):241-243
pubmed: 30258894
Med Genet. 2018;30(3):323-327
pubmed: 30459488
Oncogene. 2019 Jun;38(24):4729-4738
pubmed: 30765862
Trends Genet. 1997 Apr;13(4):163
pubmed: 9097728