The pleiotropy associated with de novo variants in CHD4, CNOT3, and SETD5 extends to moyamoya angiopathy.
Adult
Cell Cycle Proteins
/ genetics
Cerebrovascular Disorders
/ genetics
Child
Child, Preschool
DNA Helicases
/ genetics
Developmental Disabilities
/ genetics
Exome
/ genetics
Female
Genetic Predisposition to Disease
/ genetics
Humans
Intellectual Disability
/ genetics
Male
Methyltransferases
/ genetics
Mi-2 Nucleosome Remodeling and Deacetylase Complex
/ genetics
Middle Aged
Moyamoya Disease
/ genetics
Mutation
/ genetics
Nuclear Proteins
/ genetics
Transcription Factors
/ genetics
Exome Sequencing
/ methods
chromatin remodeling
developmental disorders
exome sequencing
moyamoya angiopathy
Journal
Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831
Informations de publication
Date de publication:
02 2020
02 2020
Historique:
received:
22
05
2019
accepted:
13
08
2019
pubmed:
3
9
2019
medline:
12
1
2021
entrez:
3
9
2019
Statut:
ppublish
Résumé
Moyamoya angiopathy (MMA) is a cerebrovascular disease characterized by occlusion of large arteries, which leads to strokes starting in childhood. Twelve altered genes predispose to MMA but the majority of cases of European descent do not have an identified genetic trigger. Exome sequencing from 39 trios were analyzed. We identified four de novo variants in three genes not previously associated with MMA: CHD4, CNOT3, and SETD5. Identification of additional rare variants in these genes in 158 unrelated MMA probands provided further support that rare pathogenic variants in CHD4 and CNOT3 predispose to MMA. Previous studies identified de novo variants in these genes in children with developmental disorders (DD), intellectual disability, and congenital heart disease. These genes encode proteins involved in chromatin remodeling, and taken together with previously reported genes leading to MMA-like cerebrovascular occlusive disease (YY1AP1, SMARCAL1), implicate disrupted chromatin remodeling as a molecular pathway predisposing to early onset, large artery occlusive cerebrovascular disease. Furthermore, these data expand the spectrum of phenotypic pleiotropy due to alterations of CHD4, CNOT3, and SETD5 beyond DD to later onset disease in the cerebrovascular arteries and emphasize the need to assess clinical complications into adulthood for genes associated with DD.
Identifiants
pubmed: 31474762
doi: 10.1038/s41436-019-0639-2
pii: S1098-3600(21)01278-8
pmc: PMC7673309
mid: NIHMS1634650
doi:
Substances chimiques
CHD4 protein, human
0
CNOT3 protein, human
0
Cell Cycle Proteins
0
Nuclear Proteins
0
Transcription Factors
0
YY1AP1 protein, human
0
Methyltransferases
EC 2.1.1.-
SETD5 protein, human
EC 2.1.1.-
SMARCAL1 protein, human
EC 2.7.7.-
Mi-2 Nucleosome Remodeling and Deacetylase Complex
EC 3.5.1.98
DNA Helicases
EC 3.6.4.-
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
427-431Subventions
Organisme : NHGRI NIH HHS
ID : U54 HG006493
Pays : United States
Organisme : NHGRI NIH HHS
ID : UM1 HG006493
Pays : United States
Références
Masuda J, Ogata J, Yutani C. Smooth-muscle cell-proliferation and localization of macrophages and T-cells in the occlusive intracranial major arteries in moyamoya disease. Stroke. 1993;24:1960–1967.
doi: 10.1161/01.STR.24.12.1960
Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;360:1226–1237.
doi: 10.1056/NEJMra0804622
Kamada F, Aoki Y, Narisawa A, et al. A genome-wide association study identifies RNF213 as the first moyamoya disease gene. J Hum Genet. 2011;56:34–40.
doi: 10.1038/jhg.2010.132
Friedman JM, Arbiser J, Epstein JA, et al. Cardiovascular disease in neurofibromatosis 1: report of the NF1 Cardiovascular Task Force. Genet Med. 2002;4:105–111.
doi: 10.1097/00125817-200205000-00002
Rocha R, Soro I, Leitao A, Silva ML, Leao M. Moyamoya vascular pattern in Alagille syndrome. Pediatr Neurol. 2012;47:125–128.
doi: 10.1016/j.pediatrneurol.2012.04.014
Miskinyte S, Butler MG, Herve D, et al. Loss of BRCC3 deubiquitinating enzyme leads to abnormal angiogenesis and is associated with syndromic moyamoya. Am J Hum Genet. 2011;88:718–728.
doi: 10.1016/j.ajhg.2011.04.017
Herve D, Philippi A, Belbouab R, et al. Loss of alpha1beta1 soluble guanylate cyclase, the major nitric oxide receptor, leads to moyamoya and achalasia. Am J Hum Genet. 2014;94:385–394.
doi: 10.1016/j.ajhg.2014.01.018
Bober MB, Khan N, Kaplan J, et al. Majewski osteodysplastic primordial dwarfism type II (MOPD II): expanding the vascular phenotype. Am J Med Genet A. 2010;152A:960–965.
doi: 10.1002/ajmg.a.33252
Milewicz DM, Ostergaard JR, la-Kokko LM, et al. De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction. Am J Med Genet A. 2010;152A:2437–2443.
doi: 10.1002/ajmg.a.33657
Guo DC, Duan XY, Regalado ES, et al. Loss-of-function mutations in YY1AP1 lead to Grange syndrome and a fibromuscular dysplasia-like vascular disease. Am J Hum Genet. 2017;100:21–30.
doi: 10.1016/j.ajhg.2016.11.008
Weiss K, Terhal PA, Cohen L, et al. De novo mutations in CHD4, an ATP-dependent chromatin remodeler gene, cause an intellectual disability syndrome with distinctive dysmorphisms. Am J Hum Genet. 2016;99:934–941.
doi: 10.1016/j.ajhg.2016.08.001
Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–438.
doi: 10.1038/nature21062
Powis Z, Farwell Hagman KD, Mroske C, et al. Expansion and further delineation of the SETD5 phenotype leading to global developmental delay, variable dysmorphic features, and reduced penetrance. Clin Genet. 2018;93:752–761.
doi: 10.1111/cge.13132
Sillibourne JE, Delaval B, Redick S, Sinha M, Doxsey SJ. Chromatin remodeling proteins interact with pericentrin to regulate centrosome integrity. Mol Biol Cell. 2007;18:3667–3680.
doi: 10.1091/mbc.e06-07-0604
Nitarska J, Smith JG, Sherlock WT, et al. A functional switch of NuRD chromatin remodeling complex subunits regulates mouse cortical development. Cell Rep. 2016;17:1683–1698.
doi: 10.1016/j.celrep.2016.10.022
Yamaguchi T, Suzuki T, Sato T, et al. The CCR4-NOT deadenylase complex controls Atg7-dependent cell death and heart function. Sci Signal. 2018;11:eaan3638.
doi: 10.1126/scisignal.aan3638
Peng W, Togawa C, Zhang K, Kurdistani SK. Regulators of cellular levels of histone acetylation in Saccharomyces cerevisiae. Genetics. 2008;179:277–289.
doi: 10.1534/genetics.107.085068
Neely GG, Kuba K, Cammarato A, et al. A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function. Cell. 2010;141:142–153.
doi: 10.1016/j.cell.2010.02.023
Osipovich AB, Gangula R, Vianna PG, Magnuson MA. Setd5 is essential for mammalian development and the co-transcriptional regulation of histone acetylation. Development. 2016;143:4595–4607.
doi: 10.1242/dev.141465
Villain G, Poissonnier L, Noueihed B, et al. miR-126-5p promotes retinal endothelial cell survival through SetD5 regulation in neurons. Development. 2018;145:dev156232.
doi: 10.1242/dev.156232