The DNA-binding protein HTa from
Amino Acid Sequence
Archaeal Proteins
/ chemistry
Base Composition
Chromatin
/ chemistry
DNA-Binding Proteins
/ chemistry
Escherichia coli
/ metabolism
Histones
/ metabolism
Models, Molecular
Phylogeny
Protein Binding
Protein Multimerization
Sequence Homology, Amino Acid
Thermoplasma
/ growth & development
Transcription Initiation Site
Methanothermus fervidus
Thermoplasma acidophilum
archaea
chromatin
chromosomes
convergent evolution
evolutionary biology
gene expression
histones
Journal
eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614
Informations de publication
Date de publication:
11 11 2019
11 11 2019
Historique:
received:
07
10
2019
accepted:
10
11
2019
pubmed:
12
11
2019
medline:
12
5
2020
entrez:
12
11
2019
Statut:
epublish
Résumé
Histones are a principal constituent of chromatin in eukaryotes and fundamental to our understanding of eukaryotic gene regulation. In archaea, histones are widespread but not universal: several lineages have lost histone genes. What prompted or facilitated these losses and how archaea without histones organize their chromatin remains largely unknown. Here, we elucidate primary chromatin architecture in an archaeon without histones,
Identifiants
pubmed: 31710291
doi: 10.7554/eLife.52542
pii: 52542
pmc: PMC6877293
doi:
pii:
Substances chimiques
Archaeal Proteins
0
Chromatin
0
DNA-Binding Proteins
0
Histones
0
Banques de données
GEO
['GSE127728', 'GSE127678']
SRA
['SRR495445', 'SRR574592']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Medical Research Council
ID : MC_UP_1102/7
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_A658_5TY40
Pays : United Kingdom
Informations de copyright
© 2019, Hocher et al.
Déclaration de conflit d'intérêts
AH, MR, JS, AE, TW No competing interests declared
Références
Nucleic Acids Res. 1999 Jan 15;27(2):532-6
pubmed: 9862976
BMC Genomics. 2014 Aug 16;15:684
pubmed: 25127548
Science. 2017 Aug 11;357(6351):609-612
pubmed: 28798133
Science. 1978 Oct 13;202(4364):219-21
pubmed: 694528
J Mol Biol. 2012 Mar 30;417(3):152-64
pubmed: 22310051
FEBS Lett. 2015 Oct 7;589(20 Pt A):2996-3004
pubmed: 26171924
BMC Bioinformatics. 2009 Dec 22;10:442
pubmed: 20028554
PLoS Comput Biol. 2010 Jul 08;6(7):e1000834
pubmed: 20628623
Nucleic Acids Res. 2012 Apr;40(8):3524-37
pubmed: 22180530
EMBO Rep. 2013 Aug;14(8):711-7
pubmed: 23835508
Mol Genet Genomics. 2004 Aug;272(1):76-87
pubmed: 15241681
J Mol Biol. 2004 Mar 26;337(3):561-71
pubmed: 15019777
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
Nucleic Acids Res. 2013 Apr;41(7):4171-84
pubmed: 23427309
J Bacteriol. 1999 Oct;181(20):6361-70
pubmed: 10515926
Sci Adv. 2016 Jul 29;2(7):e1600650
pubmed: 27482541
J Mol Biol. 2007 Jan 26;365(4):1005-16
pubmed: 17097674
Microbiol Rev. 1987 Sep;51(3):301-19
pubmed: 3118156
Nucleic Acids Res. 2008 Jul;36(12):3956-68
pubmed: 18515342
J Bacteriol. 2004 Jun;186(11):3492-8
pubmed: 15150236
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W327-31
pubmed: 15215404
Eukaryot Cell. 2003 Jun;2(3):646-50
pubmed: 12796310
Nucleic Acids Res. 1981 Jun 25;9(12):2643-58
pubmed: 7279658
BMC Genomics. 2013 Jun 10;14:391
pubmed: 23758892
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713
pubmed: 26574453
Bioinformatics. 2014 May 1;30(9):1312-3
pubmed: 24451623
J Biol Chem. 1981 Jan 25;256(2):905-11
pubmed: 7005226
Genome Res. 2011 Nov;21(11):1863-71
pubmed: 21750105
BMC Genomics. 2016 Aug 12;17(1):629
pubmed: 27519343
Nat Methods. 2014 Jun;11(6):689-94
pubmed: 24727652
Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):E171-E180
pubmed: 28028238
Curr Issues Mol Biol. 2011;13(1):1-12
pubmed: 20484776
Elife. 2012 Dec 13;1:e00078
pubmed: 23240084
Genome Biol. 2018 Feb 9;19(1):19
pubmed: 29426353
Curr Biol. 2012 Dec 18;22(24):2303-12
pubmed: 23159597
Nucleic Acids Res. 2007;35(8):2573-83
pubmed: 17412706
Elife. 2019 Nov 06;8:
pubmed: 31692448
J Mol Biol. 2000 Oct 13;303(1):25-34
pubmed: 11021967
Protein Sci. 2018 Jan;27(1):112-128
pubmed: 28836357
Biochim Biophys Acta. 1980 Aug 26;609(1):180-95
pubmed: 7407183
EMBO Rep. 2010 Jan;11(1):59-64
pubmed: 20010798
Res Microbiol. 1999 Nov-Dec;150(9-10):701-9
pubmed: 10673008
FEBS Lett. 2009 May 6;583(9):1446-50
pubmed: 19358847
J Bacteriol. 2016 Jun 27;198(14):1906-1917
pubmed: 27137495
Elife. 2019 Nov 11;8:
pubmed: 31710291
PLoS Genet. 2018 Sep 13;14(9):e1007582
pubmed: 30212449
G3 (Bethesda). 2015 Dec 08;6(2):397-422
pubmed: 26646152
Mol Microbiol. 2008 Feb;67(3):662-71
pubmed: 18086209
Nucleic Acids Res. 2013 Aug;41(14):e140
pubmed: 23716638
Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16397-402
pubmed: 16258062
J Proteome Res. 2010 Sep 3;9(9):4839-50
pubmed: 20669988
Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303
pubmed: 29788355
Open Biol. 2015 Apr;5(4):140218
pubmed: 25854683
Extremophiles. 2009 Jan;13(1):1-10
pubmed: 18818867
mBio. 2017 Nov 7;8(6):
pubmed: 29114022
Sci China Life Sci. 2012 May;55(5):377-85
pubmed: 22645082
J Mol Biol. 2000 Oct 13;303(1):35-47
pubmed: 11021968
Nature. 2009 Mar 19;458(7236):362-6
pubmed: 19092803
ISME J. 2017 Nov;11(11):2407-2425
pubmed: 28777382
Nat Rev Genet. 2009 Mar;10(3):161-72
pubmed: 19204718
Genome Res. 2007 Aug;17(8):1170-7
pubmed: 17620451
PLoS One. 2010 Dec 29;5(12):e15754
pubmed: 21206756
Genome Res. 2002 Oct;12(10):1619-23
pubmed: 12368255
Trends Genet. 2010 Nov;26(11):476-83
pubmed: 20832136
mBio. 2015 Sep 08;6(5):e00649-15
pubmed: 26350964
Nat Rev Microbiol. 2010 Mar;8(3):185-95
pubmed: 20140026
Nat Biotechnol. 2007 Jan;25(1):117-24
pubmed: 17187058