The C-terminal tail of the yeast mitochondrial transcription factor Mtf1 coordinates template strand alignment, DNA scrunching and timely transition into elongation.
Amino Acid Sequence
Base Sequence
Biocatalysis
DNA, Fungal
/ chemistry
Markov Chains
Methyltransferases
/ chemistry
Mitochondrial Proteins
/ chemistry
Nucleic Acid Conformation
Nucleotides
/ metabolism
Promoter Regions, Genetic
Protein Binding
Protein Conformation
RNA, Fungal
/ biosynthesis
Saccharomyces cerevisiae
/ genetics
Saccharomyces cerevisiae Proteins
/ chemistry
Sequence Deletion
Structure-Activity Relationship
Templates, Genetic
Transcription Elongation, Genetic
Transcription Factors
/ chemistry
Transcription Initiation, Genetic
Journal
Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011
Informations de publication
Date de publication:
18 03 2020
18 03 2020
Historique:
accepted:
13
01
2020
revised:
20
12
2019
received:
27
11
2019
pubmed:
26
1
2020
medline:
19
5
2020
entrez:
26
1
2020
Statut:
ppublish
Résumé
Mitochondrial RNA polymerases depend on initiation factors, such as TFB2M in humans and Mtf1 in yeast Saccharomyces cerevisiae, for promoter-specific transcription. These factors drive the melting of promoter DNA, but how they support RNA priming and growth was not understood. We show that the flexible C-terminal tails of Mtf1 and TFB2M play a crucial role in RNA priming by aiding template strand alignment in the active site for high-affinity binding of the initiating nucleotides. Using single-molecule fluorescence approaches, we show that the Mtf1 C-tail promotes RNA growth during initiation by stabilizing the scrunched DNA conformation. Additionally, due to its location in the path of the nascent RNA, the C-tail of Mtf1 serves as a sensor of the RNA-DNA hybrid length. Initially, steric clashes of the Mtf1 C-tail with short RNA-DNA hybrids cause abortive synthesis but clashes with longer RNA-DNA trigger conformational changes for the timely release of the promoter DNA to commence the transition into elongation. The remarkable similarities in the functions of the C-tail and σ3.2 finger of the bacterial factor suggest mechanistic convergence of a flexible element in the transcription initiation factor that engages the DNA template for RNA priming and growth and disengages when needed to generate the elongation complex.
Identifiants
pubmed: 31980825
pii: 5715817
doi: 10.1093/nar/gkaa040
pmc: PMC7049685
doi:
Substances chimiques
DNA, Fungal
0
MTF1 protein, S cerevisiae
0
Mitochondrial Proteins
0
Nucleotides
0
RNA, Fungal
0
Saccharomyces cerevisiae Proteins
0
Transcription Factors
0
Methyltransferases
EC 2.1.1.-
TFB2M protein, human
EC 2.1.1.-
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2604-2620Subventions
Organisme : NIGMS NIH HHS
ID : R35 GM118086
Pays : United States
Informations de copyright
© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
Références
Mol Cell. 2008 Jun 6;30(5):567-77
pubmed: 18538655
Science. 2008 Oct 24;322(5901):553-7
pubmed: 18948533
Nucleic Acids Res. 2014;42(17):11246-60
pubmed: 25183523
J Mol Evol. 1997 Dec;45(6):671-81
pubmed: 9419244
Science. 1999 Dec 17;286(5448):2305-9
pubmed: 10600732
J Biol Chem. 2017 Feb 17;292(7):2637-2645
pubmed: 28028173
Nat Genet. 2002 Jul;31(3):289-94
pubmed: 12068295
J Biol Chem. 2006 Jul 7;281(27):18273-6
pubmed: 16690607
J Biol Chem. 2010 Jun 11;285(24):18129-33
pubmed: 20410300
Science. 2006 Nov 17;314(5802):1144-7
pubmed: 17110578
Cell. 2009 Nov 25;139(5):934-44
pubmed: 19945377
J Biol Chem. 1991 Nov 25;266(33):22671-7
pubmed: 1939277
J Mol Biol. 2006 Jul 7;360(2):466-83
pubmed: 16780876
Mol Cell. 2016 Sep 15;63(6):939-50
pubmed: 27618490
J Biol Chem. 2009 Feb 27;284(9):5514-22
pubmed: 19116203
J Biol Chem. 2010 Feb 5;285(6):3957-64
pubmed: 19920143
Biochemistry. 1999 Jul 27;38(30):9693-703
pubmed: 10423248
J Biol Chem. 2013 Nov 1;288(44):31993-2003
pubmed: 24047893
Protein Sci. 2001 Oct;10(10):1980-8
pubmed: 11567089
Science. 2002 May 17;296(5571):1280-4
pubmed: 12016306
Science. 2012 Nov 23;338(6110):1076-80
pubmed: 23086998
J Biol Chem. 2011 Nov 4;286(44):38805-13
pubmed: 21911502
Nucleic Acids Res. 2014 Oct;42(18):11721-32
pubmed: 25249624
Nature. 2013 Jan 17;493(7432):437-40
pubmed: 23151482
Science. 2006 Nov 17;314(5802):1139-43
pubmed: 17110577
JMLR Workshop Conf Proc. 2013;28(2):361-369
pubmed: 26985282
J Mol Evol. 2006 Nov;63(5):707-17
pubmed: 17031457
Nucleic Acids Res. 2018 Oct 12;46(18):9401-9413
pubmed: 30032232
Nucleic Acids Res. 2014 Apr;42(7):4494-504
pubmed: 24452800
J Biol Chem. 2004 Oct 22;279(43):44239-42
pubmed: 15342628
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22175-80
pubmed: 20018723
Exp Suppl. 2014;105:105-30
pubmed: 25095993
Cell. 2017 Nov 16;171(5):1072-1081.e10
pubmed: 29149603
Methods Enzymol. 2003;370:668-86
pubmed: 14712683
J Biol Chem. 2010 Feb 5;285(6):3949-56
pubmed: 20008320
Nucleic Acids Res. 2012 Jan;40(1):371-80
pubmed: 21911357
Nucleic Acids Res. 2017 Jan 25;45(2):861-874
pubmed: 27903899
Nat Struct Mol Biol. 2013 Nov;20(11):1298-303
pubmed: 24096365
J Mol Biol. 2011 Jan 21;405(3):666-78
pubmed: 21035457