A claustrum in reptiles and its role in slow-wave sleep.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
02 2020
02 2020
Historique:
received:
13
08
2019
accepted:
12
12
2019
pubmed:
14
2
2020
medline:
30
5
2020
entrez:
14
2
2020
Statut:
ppublish
Résumé
The mammalian claustrum, owing to its widespread connectivity with other forebrain structures, has been hypothesized to mediate functions that range from decision-making to consciousness
Identifiants
pubmed: 32051589
doi: 10.1038/s41586-020-1993-6
pii: 10.1038/s41586-020-1993-6
doi:
Substances chimiques
Serotonin
333DO1RDJY
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
413-418Commentaires et corrections
Type : CommentIn
Références
Crick, F. C. & Koch, C. What is the function of the claustrum? Phil. Trans. R. Soc. Lond. B 360, 1271–1279 (2005).
doi: 10.1098/rstb.2005.1661
Buzsáki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).
pubmed: 26135716
pmcid: 4648295
doi: 10.1002/hipo.22488
Shein-Idelson, M., Ondracek, J. M., Liaw, H. P., Reiter, S. & Laurent, G. Slow waves, sharp waves, ripples, and REM in sleeping dragons. Science 352, 590–595 (2016).
pubmed: 27126045
doi: 10.1126/science.aaf3621
Saper, C. B. & Fuller, P. M. Wake-sleep circuitry: an overview. Curr. Opin. Neurobiol. 44, 186–192 (2017).
pubmed: 28577468
pmcid: 5531075
doi: 10.1016/j.conb.2017.03.021
Weber, F. & Dan, Y. Circuit-based interrogation of sleep control. Nature 538, 51–59 (2016).
pubmed: 27708309
doi: 10.1038/nature19773
Scammell, T. E., Arrigoni, E. & Lipton, J. O. Neural circuitry of wakefulness and sleep. Neuron 93, 747–765 (2017).
pubmed: 28231463
pmcid: 5325713
doi: 10.1016/j.neuron.2017.01.014
Lyamin, O. I., Manger, P. R., Ridgway, S. H., Mukhametov, L. M. & Siegel, J. M. Cetacean sleep: an unusual form of mammalian sleep. Neurosci. Biobehav. Rev. 32, 1451–1484 (2008).
pubmed: 18602158
pmcid: 8742503
doi: 10.1016/j.neubiorev.2008.05.023
Naumann, R. K. & Laurent, G. in Evolution of Nervous Systems Vol. 1 (ed. Kaas, J. H.) 491–518 (Elsevier, 2017).
Moreno, N. & González, A. Evolution of the amygdaloid complex in vertebrates, with special reference to the anamnio-amniotic transition. J. Anat. 211, 151–163 (2007).
pubmed: 17634058
pmcid: 2375767
doi: 10.1111/j.1469-7580.2007.00780.x
Puelles, L. et al. in Evolution of Nervous Systems Vol. 1 (ed. Kaas, J. H.) 519–555 (Elsevier, 2017).
Tosches, M. A. et al. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360, 881–888 (2018).
pubmed: 29724907
doi: 10.1126/science.aar4237
Wang, Q. et al. Organization of the connections between claustrum and cortex in the mouse. J. Comp. Neurol. 525, 1317–1346 (2017).
pubmed: 27223051
doi: 10.1002/cne.24047
Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030 (2018).
pubmed: 30096299
pmcid: 6447408
doi: 10.1016/j.cell.2018.07.028
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
pubmed: 31178118
pmcid: 6687398
doi: 10.1016/j.cell.2019.05.031
Striedter, G. F. The telencephalon of tetrapods in evolution. Brain Behav. Evol. 49, 179–213 (1997).
pubmed: 9096908
doi: 10.1159/000112991
Monti, J. M. Serotonin control of sleep-wake behavior. Sleep Med. Rev. 15, 269–281 (2011).
pubmed: 21459634
doi: 10.1016/j.smrv.2010.11.003
Clément, O., Sapin, E., Bérod, A., Fort, P. & Luppi, P. H. Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic. Sleep 34, 419–423 (2011).
pubmed: 21461384
pmcid: 3064553
doi: 10.1093/sleep/34.4.419
Hobson, J. A., McCarley, R. W. & Wyzinski, P. W. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189, 55–58 (1975).
pubmed: 1094539
doi: 10.1126/science.1094539
da Costa, N. M., Fürsinger, D. & Martin, K. A. The synaptic organization of the claustral projection to the cat’s visual cortex. J. Neurosci. 30, 13166–13170 (2010).
pubmed: 20881135
pmcid: 6633497
doi: 10.1523/JNEUROSCI.3122-10.2010
Druga, R. in The Claustrum: Structural, Functional, and Clinical Neuroscience (eds Smythies, J. R. et al.) 29–84 (Academic, 2014).
Olson, C. R. & Graybiel, A. M. Sensory maps in the claustrum of the cat. Nature 288, 479–481 (1980).
pubmed: 7442793
doi: 10.1038/288479a0
Pammer, L. Explorations of Turtle Cortex Function through Molecular, Optogenetic and Electrophysiological Techniques. PhD thesis, Goethe Univ. (2017).
Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).
pubmed: 27720486
pmcid: 5872824
doi: 10.1016/j.neuron.2016.09.021
Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).
pubmed: 24695228
pmcid: 5102064
doi: 10.1038/nature13186
Harris, J. A., Oh, S. W. & Zeng, H. Adeno-associated viral vectors for anterograde axonal tracing with fluorescent proteins in nontransgenic and Cre driver mice. Curr. Protoc. Neurosci. 59, 1.20.1–1.20.18 (2012).
doi: 10.1002/0471142301.ns0120s59
Desan, P. H. in The Forebrain of Reptiles (eds Schwerdtfeger, W. K. & Smeets, W. J.) 1–11 (Karger, 1987).
Heller, S. B. & Ulinski, P. S. Morphology of geniculocortical axons in turtles of the genera Pseudemys and Chrysemys. Anat. Embryol. 175, 505–515 (1987).
doi: 10.1007/BF00309685
Atlan, G. et al. The claustrum supports resilience to distraction. Curr. Biol. 28, 2752–2762 (2018).
pubmed: 30122531
pmcid: 6485402
doi: 10.1016/j.cub.2018.06.068
Smythies, J., Edelstein, L. & Ramachandran, V. Hypotheses relating to the function of the claustrum. Front. Integr. Neurosci. 6, 53 (2012).
pubmed: 22876222
pmcid: 3410410
doi: 10.3389/fnint.2012.00053
Dillingham, C. M., Janowski, M. M., Chandra, R., Frost, B. E. & O’Mara, S. M. The claustrum: considerations regarding its anatomy, functions and a programme for research. Brain Neurosci. Adv. 1, 1–9 (2017).
doi: 10.1177/2398212817718962
Edelstein, L. R. & Denaro, F. J. The claustrum: a historical review of its anatomy, physiology, cytochemistry and functional significance. Cell. Mol. Biol. 50, 675–702 (2004).
pubmed: 15643691
Goll, Y., Atlan, G. & Citri, A. Attention: the claustrum. Trends Neurosci. 38, 486–495 (2015).
pubmed: 26116988
doi: 10.1016/j.tins.2015.05.006
Mathur, B. N., Caprioli, R. M. & Deutch, A. Y. Proteomic analysis illuminates a novel structural definition of the claustrum and insula. Cereb. Cortex 19, 2372–2379 (2009).
pubmed: 19168664
pmcid: 2742595
doi: 10.1093/cercor/bhn253
Puelles, L. in The Claustrum: Structural, Functional, and Clinical Neuroscience (eds Smythies, J. R. et al.) 119–176 (Academic, 2014).
Briscoe, S. D., Albertin, C. B., Rowell, J. J. & Ragsdale, C. W. Neocortical association cell types in the forebrain of birds and alligators. Curr. Biol. 28, 686–696 (2018).
pubmed: 29456143
doi: 10.1016/j.cub.2018.01.036
Buchanan, K. J. & Johnson, J. I. Diversity of spatial relationships of the claustrum and insula in branches of the mammalian radiation. Ann. NY Acad. Sci. 1225, E30–E63 (2011).
pubmed: 21599698
doi: 10.1111/j.1749-6632.2011.06022.x
Gabor, A. J. & Peele, T. L. Alterations of behavior following stimulation of the claustrum of the cat. Electroencephalogr. Clin. Neurophysiol. 17, 513–519 (1964).
pubmed: 14229851
doi: 10.1016/0013-4694(64)90181-6
Renouard, L. et al. The supramammillary nucleus and the claustrum activate the cortex during REM sleep. Sci. Adv. 1, e1400177 (2015).
pubmed: 26601158
pmcid: 4640625
doi: 10.1126/sciadv.1400177
Jackson, J., Karnani, M. M., Zemelman, B. V., Burdakov, D. & Lee, A. K. Inhibitory control of prefrontal cortex by the claustrum. Neuron 99, 1029–1039 (2018).
pubmed: 30122374
pmcid: 6168643
doi: 10.1016/j.neuron.2018.07.031
Narikiyo, K. et al. The claustrum coordinates cortical slow-wave activity. Preprint at bioRxiv https://doi.org/10.1101/286773 (2018).
Siapas, A. G. & Wilson, M. A. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128 (1998).
pubmed: 9856467
doi: 10.1016/S0896-6273(00)80629-7
McInnes, L., Healy, J. & Melville, J. UMAP: Uniform manifold approximation and projection for dimension reduction. Preprint at http://arxiv.org/abs/1802.03426 (2018).
Moreno, N., Domínguez, L., Morona, R. & González, A. Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers. J. Comp. Neurol. 520, 453–478 (2012).
pubmed: 21935937
doi: 10.1002/cne.22762
Medina, L., Smeets, W. J., Hoogland, P. V. & Puelles, L. Distribution of choline acetyltransferase immunoreactivity in the brain of the lizard Gallotia galloti. J. Comp. Neurol. 331, 261–285 (1993).
pubmed: 8509502
doi: 10.1002/cne.903310209
Bruce, L. L. & Neary, T. J. Afferent projections to the ventromedial hypothalamic nucleus in a lizard, Gekko gecko. Brain Behav. Evol. 46, 14–29 (1995).
pubmed: 7552218
doi: 10.1159/000113255
Bruce, L. L. & Neary, T. J. Afferent projections to the lateral and dorsomedial hypothalamus in a lizard, Gekko gecko. Brain Behav. Evol. 46, 30–42 (1995).
pubmed: 7552219
doi: 10.1159/000113256
Ebner, F. F. in Evolution of Brain and Behavior in Vertebrates (eds Masterton, R. B. et al.) 115–167 (Taylor & Francis, 1976).
Font, C., Lanuza, E., Martinez-Marcos, A., Hoogland, P. V. & Martinez-Garcia, F. Septal complex of the telencephalon of lizards: III. Efferent connections and general discussion. J. Comp. Neurol. 401, 525–548 (1998).
pubmed: 9826276
doi: 10.1002/(SICI)1096-9861(19981130)401:4<525::AID-CNE6>3.0.CO;2-Y
Hoogland, P. V. & Vermeulen-Vanderzee, E. Efferent connections of the dorsal cortex of the lizard Gekko gecko studied with Phaseolus vulgaris–leucoagglutinin. J. Comp. Neurol. 285, 289–303 (1989).
pubmed: 2760266
doi: 10.1002/cne.902850302
Smeets, W. J. & Steinbusch, H. W. Distribution of noradrenaline immunoreactivity in the forebrain and midbrain of the lizard Gekko gecko. J. Comp. Neurol. 285, 453–466 (1989).
pubmed: 2668353
doi: 10.1002/cne.902850404
Smeets, W. J., Hoogland, P. V. & Voorn, P. The distribution of dopamine immunoreactivity in the forebrain and midbrain of the lizard Gekko gecko: an immunohistochemical study with antibodies against dopamine. J. Comp. Neurol. 253, 46–60 (1986).
pubmed: 3540035
doi: 10.1002/cne.902530105
ten Donkelaar, H. J., Bangma, G. C., Barbas-Henry, H. A., de Boer-van Huizen, R. & Wolters, J. G. The brain stem in a lizard, Varanus exanthematicus. Adv. Anat. Embryol. Cell Biol. 107, 1–2 (1987).
pubmed: 3318284
doi: 10.1007/978-3-642-72763-4_1
ten Donkelaar, H. J. in The Central Nervous System of Vertebrates Vol. 1–3 (eds Nieuwenhuys, H. et al.) 1315–1524 (Springer, 1998).
Wolters, J. G., ten Donkelaar, H. J., Steinbusch, H. W. & Verhofstad, A. A. Distribution of serotonin in the brain stem and spinal cord of the lizard Varanus exanthematicus: an immunohistochemical study. Neuroscience 14, 169–193 (1985).
pubmed: 3883229
doi: 10.1016/0306-4522(85)90172-1
Wolters, J. G., ten Donkelaar, H. J. & Verhofstad, A. A. Distribution of catecholamines in the brain stem and spinal cord of the lizard Varanus exanthematicus: an immunohistochemical study based on the use of antibodies to tyrosine hydroxylase. Neuroscience 13, 469–493 (1984).
pubmed: 6151148
doi: 10.1016/0306-4522(84)90243-4
Pedersen, N. P. et al. Supramammillary glutamate neurons are a key node of the arousal system. Nat. Commun. 8, 1405 (2017).
pubmed: 29123082
pmcid: 5680228
doi: 10.1038/s41467-017-01004-6