A claustrum in reptiles and its role in slow-wave sleep.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
02 2020
Historique:
received: 13 08 2019
accepted: 12 12 2019
pubmed: 14 2 2020
medline: 30 5 2020
entrez: 14 2 2020
Statut: ppublish

Résumé

The mammalian claustrum, owing to its widespread connectivity with other forebrain structures, has been hypothesized to mediate functions that range from decision-making to consciousness

Identifiants

pubmed: 32051589
doi: 10.1038/s41586-020-1993-6
pii: 10.1038/s41586-020-1993-6
doi:

Substances chimiques

Serotonin 333DO1RDJY

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

413-418

Commentaires et corrections

Type : CommentIn

Références

Crick, F. C. & Koch, C. What is the function of the claustrum? Phil. Trans. R. Soc. Lond. B 360, 1271–1279 (2005).
doi: 10.1098/rstb.2005.1661
Buzsáki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).
pubmed: 26135716 pmcid: 4648295 doi: 10.1002/hipo.22488
Shein-Idelson, M., Ondracek, J. M., Liaw, H. P., Reiter, S. & Laurent, G. Slow waves, sharp waves, ripples, and REM in sleeping dragons. Science 352, 590–595 (2016).
pubmed: 27126045 doi: 10.1126/science.aaf3621
Saper, C. B. & Fuller, P. M. Wake-sleep circuitry: an overview. Curr. Opin. Neurobiol. 44, 186–192 (2017).
pubmed: 28577468 pmcid: 5531075 doi: 10.1016/j.conb.2017.03.021
Weber, F. & Dan, Y. Circuit-based interrogation of sleep control. Nature 538, 51–59 (2016).
pubmed: 27708309 doi: 10.1038/nature19773
Scammell, T. E., Arrigoni, E. & Lipton, J. O. Neural circuitry of wakefulness and sleep. Neuron 93, 747–765 (2017).
pubmed: 28231463 pmcid: 5325713 doi: 10.1016/j.neuron.2017.01.014
Lyamin, O. I., Manger, P. R., Ridgway, S. H., Mukhametov, L. M. & Siegel, J. M. Cetacean sleep: an unusual form of mammalian sleep. Neurosci. Biobehav. Rev. 32, 1451–1484 (2008).
pubmed: 18602158 pmcid: 8742503 doi: 10.1016/j.neubiorev.2008.05.023
Naumann, R. K. & Laurent, G. in Evolution of Nervous Systems Vol. 1 (ed. Kaas, J. H.) 491–518 (Elsevier, 2017).
Moreno, N. & González, A. Evolution of the amygdaloid complex in vertebrates, with special reference to the anamnio-amniotic transition. J. Anat. 211, 151–163 (2007).
pubmed: 17634058 pmcid: 2375767 doi: 10.1111/j.1469-7580.2007.00780.x
Puelles, L. et al. in Evolution of Nervous Systems Vol. 1 (ed. Kaas, J. H.) 519–555 (Elsevier, 2017).
Tosches, M. A. et al. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360, 881–888 (2018).
pubmed: 29724907 doi: 10.1126/science.aar4237
Wang, Q. et al. Organization of the connections between claustrum and cortex in the mouse. J. Comp. Neurol. 525, 1317–1346 (2017).
pubmed: 27223051 doi: 10.1002/cne.24047
Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030 (2018).
pubmed: 30096299 pmcid: 6447408 doi: 10.1016/j.cell.2018.07.028
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Striedter, G. F. The telencephalon of tetrapods in evolution. Brain Behav. Evol. 49, 179–213 (1997).
pubmed: 9096908 doi: 10.1159/000112991
Monti, J. M. Serotonin control of sleep-wake behavior. Sleep Med. Rev. 15, 269–281 (2011).
pubmed: 21459634 doi: 10.1016/j.smrv.2010.11.003
Clément, O., Sapin, E., Bérod, A., Fort, P. & Luppi, P. H. Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic. Sleep 34, 419–423 (2011).
pubmed: 21461384 pmcid: 3064553 doi: 10.1093/sleep/34.4.419
Hobson, J. A., McCarley, R. W. & Wyzinski, P. W. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189, 55–58 (1975).
pubmed: 1094539 doi: 10.1126/science.1094539
da Costa, N. M., Fürsinger, D. & Martin, K. A. The synaptic organization of the claustral projection to the cat’s visual cortex. J. Neurosci. 30, 13166–13170 (2010).
pubmed: 20881135 pmcid: 6633497 doi: 10.1523/JNEUROSCI.3122-10.2010
Druga, R. in The Claustrum: Structural, Functional, and Clinical Neuroscience (eds Smythies, J. R. et al.) 29–84 (Academic, 2014).
Olson, C. R. & Graybiel, A. M. Sensory maps in the claustrum of the cat. Nature 288, 479–481 (1980).
pubmed: 7442793 doi: 10.1038/288479a0
Pammer, L. Explorations of Turtle Cortex Function through Molecular, Optogenetic and Electrophysiological Techniques. PhD thesis, Goethe Univ. (2017).
Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).
pubmed: 27720486 pmcid: 5872824 doi: 10.1016/j.neuron.2016.09.021
Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).
pubmed: 24695228 pmcid: 5102064 doi: 10.1038/nature13186
Harris, J. A., Oh, S. W. & Zeng, H. Adeno-associated viral vectors for anterograde axonal tracing with fluorescent proteins in nontransgenic and Cre driver mice. Curr. Protoc. Neurosci. 59, 1.20.1–1.20.18 (2012).
doi: 10.1002/0471142301.ns0120s59
Desan, P. H. in The Forebrain of Reptiles (eds Schwerdtfeger, W. K. & Smeets, W. J.) 1–11 (Karger, 1987).
Heller, S. B. & Ulinski, P. S. Morphology of geniculocortical axons in turtles of the genera Pseudemys and Chrysemys. Anat. Embryol. 175, 505–515 (1987).
doi: 10.1007/BF00309685
Atlan, G. et al. The claustrum supports resilience to distraction. Curr. Biol. 28, 2752–2762 (2018).
pubmed: 30122531 pmcid: 6485402 doi: 10.1016/j.cub.2018.06.068
Smythies, J., Edelstein, L. & Ramachandran, V. Hypotheses relating to the function of the claustrum. Front. Integr. Neurosci. 6, 53 (2012).
pubmed: 22876222 pmcid: 3410410 doi: 10.3389/fnint.2012.00053
Dillingham, C. M., Janowski, M. M., Chandra, R., Frost, B. E. & O’Mara, S. M. The claustrum: considerations regarding its anatomy, functions and a programme for research. Brain Neurosci. Adv. 1, 1–9 (2017).
doi: 10.1177/2398212817718962
Edelstein, L. R. & Denaro, F. J. The claustrum: a historical review of its anatomy, physiology, cytochemistry and functional significance. Cell. Mol. Biol. 50, 675–702 (2004).
pubmed: 15643691
Goll, Y., Atlan, G. & Citri, A. Attention: the claustrum. Trends Neurosci. 38, 486–495 (2015).
pubmed: 26116988 doi: 10.1016/j.tins.2015.05.006
Mathur, B. N., Caprioli, R. M. & Deutch, A. Y. Proteomic analysis illuminates a novel structural definition of the claustrum and insula. Cereb. Cortex 19, 2372–2379 (2009).
pubmed: 19168664 pmcid: 2742595 doi: 10.1093/cercor/bhn253
Puelles, L. in The Claustrum: Structural, Functional, and Clinical Neuroscience (eds Smythies, J. R. et al.) 119–176 (Academic, 2014).
Briscoe, S. D., Albertin, C. B., Rowell, J. J. & Ragsdale, C. W. Neocortical association cell types in the forebrain of birds and alligators. Curr. Biol. 28, 686–696 (2018).
pubmed: 29456143 doi: 10.1016/j.cub.2018.01.036
Buchanan, K. J. & Johnson, J. I. Diversity of spatial relationships of the claustrum and insula in branches of the mammalian radiation. Ann. NY Acad. Sci. 1225, E30–E63 (2011).
pubmed: 21599698 doi: 10.1111/j.1749-6632.2011.06022.x
Gabor, A. J. & Peele, T. L. Alterations of behavior following stimulation of the claustrum of the cat. Electroencephalogr. Clin. Neurophysiol. 17, 513–519 (1964).
pubmed: 14229851 doi: 10.1016/0013-4694(64)90181-6
Renouard, L. et al. The supramammillary nucleus and the claustrum activate the cortex during REM sleep. Sci. Adv. 1, e1400177 (2015).
pubmed: 26601158 pmcid: 4640625 doi: 10.1126/sciadv.1400177
Jackson, J., Karnani, M. M., Zemelman, B. V., Burdakov, D. & Lee, A. K. Inhibitory control of prefrontal cortex by the claustrum. Neuron 99, 1029–1039 (2018).
pubmed: 30122374 pmcid: 6168643 doi: 10.1016/j.neuron.2018.07.031
Narikiyo, K. et al. The claustrum coordinates cortical slow-wave activity. Preprint at bioRxiv https://doi.org/10.1101/286773 (2018).
Siapas, A. G. & Wilson, M. A. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128 (1998).
pubmed: 9856467 doi: 10.1016/S0896-6273(00)80629-7
McInnes, L., Healy, J. & Melville, J. UMAP: Uniform manifold approximation and projection for dimension reduction. Preprint at http://arxiv.org/abs/1802.03426 (2018).
Moreno, N., Domínguez, L., Morona, R. & González, A. Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers. J. Comp. Neurol. 520, 453–478 (2012).
pubmed: 21935937 doi: 10.1002/cne.22762
Medina, L., Smeets, W. J., Hoogland, P. V. & Puelles, L. Distribution of choline acetyltransferase immunoreactivity in the brain of the lizard Gallotia galloti. J. Comp. Neurol. 331, 261–285 (1993).
pubmed: 8509502 doi: 10.1002/cne.903310209
Bruce, L. L. & Neary, T. J. Afferent projections to the ventromedial hypothalamic nucleus in a lizard, Gekko gecko. Brain Behav. Evol. 46, 14–29 (1995).
pubmed: 7552218 doi: 10.1159/000113255
Bruce, L. L. & Neary, T. J. Afferent projections to the lateral and dorsomedial hypothalamus in a lizard, Gekko gecko. Brain Behav. Evol. 46, 30–42 (1995).
pubmed: 7552219 doi: 10.1159/000113256
Ebner, F. F. in Evolution of Brain and Behavior in Vertebrates (eds Masterton, R. B. et al.) 115–167 (Taylor & Francis, 1976).
Font, C., Lanuza, E., Martinez-Marcos, A., Hoogland, P. V. & Martinez-Garcia, F. Septal complex of the telencephalon of lizards: III. Efferent connections and general discussion. J. Comp. Neurol. 401, 525–548 (1998).
pubmed: 9826276 doi: 10.1002/(SICI)1096-9861(19981130)401:4<525::AID-CNE6>3.0.CO;2-Y
Hoogland, P. V. & Vermeulen-Vanderzee, E. Efferent connections of the dorsal cortex of the lizard Gekko gecko studied with Phaseolus vulgaris–leucoagglutinin. J. Comp. Neurol. 285, 289–303 (1989).
pubmed: 2760266 doi: 10.1002/cne.902850302
Smeets, W. J. & Steinbusch, H. W. Distribution of noradrenaline immunoreactivity in the forebrain and midbrain of the lizard Gekko gecko. J. Comp. Neurol. 285, 453–466 (1989).
pubmed: 2668353 doi: 10.1002/cne.902850404
Smeets, W. J., Hoogland, P. V. & Voorn, P. The distribution of dopamine immunoreactivity in the forebrain and midbrain of the lizard Gekko gecko: an immunohistochemical study with antibodies against dopamine. J. Comp. Neurol. 253, 46–60 (1986).
pubmed: 3540035 doi: 10.1002/cne.902530105
ten Donkelaar, H. J., Bangma, G. C., Barbas-Henry, H. A., de Boer-van Huizen, R. & Wolters, J. G. The brain stem in a lizard, Varanus exanthematicus. Adv. Anat. Embryol. Cell Biol. 107, 1–2 (1987).
pubmed: 3318284 doi: 10.1007/978-3-642-72763-4_1
ten Donkelaar, H. J. in The Central Nervous System of Vertebrates Vol. 1–3 (eds Nieuwenhuys, H. et al.) 1315–1524 (Springer, 1998).
Wolters, J. G., ten Donkelaar, H. J., Steinbusch, H. W. & Verhofstad, A. A. Distribution of serotonin in the brain stem and spinal cord of the lizard Varanus exanthematicus: an immunohistochemical study. Neuroscience 14, 169–193 (1985).
pubmed: 3883229 doi: 10.1016/0306-4522(85)90172-1
Wolters, J. G., ten Donkelaar, H. J. & Verhofstad, A. A. Distribution of catecholamines in the brain stem and spinal cord of the lizard Varanus exanthematicus: an immunohistochemical study based on the use of antibodies to tyrosine hydroxylase. Neuroscience 13, 469–493 (1984).
pubmed: 6151148 doi: 10.1016/0306-4522(84)90243-4
Pedersen, N. P. et al. Supramammillary glutamate neurons are a key node of the arousal system. Nat. Commun. 8, 1405 (2017).
pubmed: 29123082 pmcid: 5680228 doi: 10.1038/s41467-017-01004-6

Auteurs

Hiroaki Norimoto (H)

Max Planck Institute for Brain Research, Frankfurt am Main, Germany.

Lorenz A Fenk (LA)

Max Planck Institute for Brain Research, Frankfurt am Main, Germany.

Hsing-Hsi Li (HH)

Max Planck Institute for Brain Research, Frankfurt am Main, Germany.

Maria Antonietta Tosches (MA)

Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
Department of Biological Sciences, Columbia University, New York, NY, USA.

Tatiana Gallego-Flores (T)

Max Planck Institute for Brain Research, Frankfurt am Main, Germany.

David Hain (D)

Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
Department of Life Sciences, Goethe University, Frankfurt am Main, Germany.

Sam Reiter (S)

Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.

Riho Kobayashi (R)

Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.

Angeles Macias (A)

Max Planck Institute for Brain Research, Frankfurt am Main, Germany.

Anja Arends (A)

Max Planck Institute for Brain Research, Frankfurt am Main, Germany.

Michaela Klinkmann (M)

Max Planck Institute for Brain Research, Frankfurt am Main, Germany.

Gilles Laurent (G)

Max Planck Institute for Brain Research, Frankfurt am Main, Germany. gilles.laurent@brain.mpg.de.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH