De novo transcriptome assembly and analysis of Phragmites karka, an invasive halophyte, to study the mechanism of salinity stress tolerance.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
23 03 2020
Historique:
received: 25 11 2019
accepted: 27 02 2020
entrez: 7 4 2020
pubmed: 7 4 2020
medline: 1 12 2020
Statut: epublish

Résumé

With the rapidly deteriorating environmental conditions, the development of stress tolerant plants has become a priority for sustaining agricultural productivity. Therefore, studying the process of stress tolerance in naturally tolerant species hold significant promise. Phragmites karka is an invasive plant species found abundantly in tropical and sub tropical regions, fresh water regions and brackish marshy areas, such as river banks and lake shores. The plant possesses the ability to adapt and survive under conditions of high salinity. We subjected P. karka seedlings to salt stress and carried out whole transcriptome profiling of leaf and root tissues. Assessing the global transcriptome changes under salt stress resulted in the identification of several genes that are differentially regulated under stress conditions in root and leaf tissue. A total of 161,403 unigenes were assembled and used as a reference for digital gene expression analysis. A number of key metabolic pathways were found to be over-represented. Digital gene expression analysis was validated using qRT-PCR. In addition, a number of different transcription factor families including WRKY, MYB, CCCH, NAC etc. were differentially expressed under salinity stress. Our data will facilitate further characterisation of genes involved in salinity stress tolerance in P. karka. The DEGs from our results are potential candidates for understanding and engineering abiotic stress tolerance in plants.

Identifiants

pubmed: 32251358
doi: 10.1038/s41598-020-61857-8
pii: 10.1038/s41598-020-61857-8
pmc: PMC7089983
doi:

Substances chimiques

DNA, Plant 0
RNA, Plant 0
Transcription Factors 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5192

Références

Eller, F., Lambertini, C., Nielsen, M. W., Radutoiu, S. & Brix, H. Expression of major photosynthetic and salt‐resistance genes in invasive reed lineages grown under elevated CO
doi: 10.1002/ece3.1282 pubmed: 4242567 pmcid: 4242567
Lambertini, C. et al. A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Systematics and Evolution 258, 161–182 (2006).
doi: 10.1007/s00606-006-0412-2
Batty, L. C. & Younger, P. L. Effects of External Iron Concentration upon Seedling Growth and Uptake of Fe and Phosphate by the Common Reed, Phragmites australis (Cav.) Trin ex. Steudel. Annals of Botany 92, 801–806, https://doi.org/10.1093/aob/mcg205 (2003).
doi: 10.1093/aob/mcg205 pubmed: 4243622 pmcid: 4243622
Rudrappa, T., Bonsall, J., Gallagher, J. L., Seliskar, D. M. & Bais, H. P. Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. Journal of chemical ecology 33, 1898–1918, https://doi.org/10.1007/s10886-007-9353-7 (2007).
doi: 10.1007/s10886-007-9353-7
Abideen, Z. et al. Sustainable biofuel production from non-food sources – An overview. Emirates Journal of Food and Agriculture 26, 1066 (2014).
doi: 10.9755/ejfa.v26i12.19107
Sharma, U. K. & Pegu, S. Ethnobotany of religious and supernatural beliefs of the Mising tribes of Assam with special reference to the ‘Dobur Uie’. Journal of ethnobiology and ethnomedicine 7, 16, https://doi.org/10.1186/1746-4269-7-16 (2011).
doi: 10.1186/1746-4269-7-16 pubmed: 3135499 pmcid: 3135499
Qasim, M. et al. Traditional ethnobotanical uses of medicinal plants from coastal areas. J. Coast. Life Med. 2, 22–30 (2014).
Rahman, H. et al. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. Plant molecular biology 85, 485–503 (2014).
doi: 10.1007/s11103-014-0199-4
Huh, G. H. et al. Salt causes ion disequilibrium‐induced programmed cell death in yeast and plants. The Plant Journal 29, 649–659 (2002).
doi: 10.1046/j.0960-7412.2001.01247.x pubmed: 11874577 pmcid: 11874577
Ueda, A., Kathiresan, A., Bennett, J. & Takabe, T. Comparative transcriptome analyses of barley and rice under salt stress. Theoretical and Applied Genetics 112, 1286–1294 (2006).
doi: 10.1007/s00122-006-0231-4 pubmed: 16496119 pmcid: 16496119
Turan, S., Cornish, K. & Kumar, S. Salinity tolerance in plants: breeding and genetic engineering. Australian Journal of Crop Science 6, 1337 (2012).
Parida, A. & George, S. Sustaining and enhancing crop productivity in an era of climate change. Current Science, 462–473 (2015).
Cotsaftis, O. et al. Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Molecular Plant 4, 25–41 (2011).
doi: 10.1093/mp/ssq056 pubmed: 20924028 pmcid: 20924028
Karakousis, A. et al. Potential of SSR markers for plant breeding and variety identification in Australian barley germplasm. Australian journal of agricultural research 54, 1197–1210 (2003).
doi: 10.1071/AR02178
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
doi: 10.1093/bioinformatics/btv351 pubmed: 26059717 pmcid: 26059717
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
doi: 10.1093/bioinformatics/btp616 pubmed: 19910308 pmcid: 19910308
Golldack, D., Li, C., Mohan, H. & Probst, N. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Frontiers in plant science 5, 151 (2014).
doi: 10.3389/fpls.2014.00151 pubmed: 24795738 pmcid: 24795738
Deinlein, U. et al. Plant salt-tolerance mechanisms. Trends in plant science 19, 371–379 (2014).
doi: 10.1016/j.tplants.2014.02.001 pubmed: 24630845 pmcid: 24630845
Beier, S., Thiel, T., Münch, T., Scholz, U. & Mascher, M. MISA-web: a web server for microsatellite prediction. Bioinformatics 33, 2583–2585 (2017).
doi: 10.1093/bioinformatics/btx198 pubmed: 28398459 pmcid: 28398459
Nandal, M. & Hooda, R. Salt tolerance and physiological response of plants to salinity: A Review. International Journal of Scientific & Engineering Research 4, 44–67 (2013).
Liu, J. et al. BinPacker: packing-based de novo transcriptome assembly from RNA-seq data. PLoS computational biology 12 (2016).
Bushmanova, E., Antipov, D., Lapidus, A. & Prjibelski, A. D. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. GigaScience 8, giz100 (2019).
doi: 10.1093/gigascience/giz100 pubmed: 31494669 pmcid: 31494669
Hölzer, M. & Marz, M. De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers. GigaScience 8, giz039 (2019).
doi: 10.1093/gigascience/giz039 pubmed: 31077315 pmcid: 31077315
Wu, B. et al. Transcriptome analysis of hexaploid hulless oat in response to salinity stress. PloS One 12, 16, https://doi.org/10.1371/journal.pone.0171451 (2017).
doi: 10.1371/journal.pone.0171451
Koops, P. et al. EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. Journal of experimental botany 62, 5547–5560 (2011).
doi: 10.1093/jxb/err236 pubmed: 21831845 pmcid: 21831845
Li, Y. et al. The SCF E3 ligase AtPP2-B11 plays a negative role in response to drought stress in Arabidopsis. Plant molecular biology reporter 32, 943–956 (2014).
doi: 10.1007/s11105-014-0705-5
Moghaieb, R. E., Saneoka, H. & Fujita, K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. Plant science 166, 1345–1349 (2004).
doi: 10.1016/j.plantsci.2004.01.016
Zhao, J., Davis, L. C. & Verpoorte, R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology advances 23, 283–333, https://doi.org/10.1016/j.biotechadv.2005.01.003 (2005).
doi: 10.1016/j.biotechadv.2005.01.003 pubmed: 15848039 pmcid: 15848039
Arbona, V., Manzi, M., Ollas, C. D. & Gómez-Cadenas, A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. International journal of molecular sciences 14, 4885–4911 (2013).
doi: 10.3390/ijms14034885 pubmed: 23455464 pmcid: 23455464
Saha, A. et al. Genome-wide identification and comprehensive expression profiling of Ribosomal Protein Small Subunit (RPS) genes and their comparative analysis with the Large Subunit (RPL) genes in rice. Frontiers in plant science 8, 1553 (2017).
doi: 10.3389/fpls.2017.01553 pubmed: 5605565 pmcid: 5605565
Dong, W., Liu, X., Li, D., Gao, T. & Song, Y. Transcriptional profiling reveals that a MYB transcription factor MsMYB4 contributes to the salinity stress response of alfalfa. PloS one 13 (2018).
Wu, J. et al. Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant physiology and biochemistry 137, 179–188 (2019).
doi: 10.1016/j.plaphy.2019.02.010
Ivanova, A. et al. A Mitochondrial LYR Protein Is Required for Complex I Assembly. Plant physiology 181, 1632–1650 (2019).
doi: 10.1104/pp.19.00822 pubmed: 6878026 pmcid: 6878026
Behr, M., Legay, S., Hausman, J.-F. & Guerriero, G. Analysis of cell wall-related genes in organs of Medicago sativa L. under different abiotic stresses. International journal of molecular sciences 16, 16104–16124 (2015).
doi: 10.3390/ijms160716104 pubmed: 4519941 pmcid: 4519941
Zhu, J. K. Abiotic stress signaling and responses in plants. Cell. 167, 313–324 (2016).
doi: 10.1016/j.cell.2016.08.029 pubmed: 5104190 pmcid: 5104190
Sardans, J. et al. Plant invasion is associated with higher plant–soil nutrient concentrations in nutrient‐poor environments. Global Change Biology 23, 1282–1291 (2017).
doi: 10.1111/gcb.13384
Guo, W. et al. Comparative transcriptome analysis of the invasive weed Mikania micrantha with its native congeners provides insights into genetic basis underlying successful invasion. BMC genomics 19, 392 (2018).
doi: 10.1186/s12864-018-4784-9 pubmed: 5968712 pmcid: 5968712
Leitch, A. & Leitch, I. Genomic plasticity and the diversity of polyploid plants. Science 320, 481–483 (2008).
doi: 10.1126/science.1153585
Dhaliwal, A., Kaur, N. & Gupta, R. C. Cytology of some grasses from Haryana and Shiwalik Hills. Cytologia 83, 23–30 (2018).
doi: 10.1508/cytologia.83.23
Podda, A. et al. Salt-stress induced changes in the leaf proteome of diploid and tetraploid mandarins with contrasting Na+ and Cl− accumulation behaviour. Journal of plant physiology 170, 1101–1112 (2013).
doi: 10.1016/j.jplph.2013.03.006 pubmed: 23608743 pmcid: 23608743
Comai, L. The advantages and disadvantages of being polyploid. Nature reviews genetics 6, 836–846 (2005).
doi: 10.1038/nrg1711 pubmed: 16304599 pmcid: 16304599
Sah, S. K., Reddy, K. R. & Li, J. Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in plant science 7, 571 (2016).
doi: 10.3389/fpls.2016.00571 pubmed: 27200044 pmcid: 27200044
Ryu, H. & Cho, Y.-G. Plant hormones in salt stress tolerance. Journal of Plant Biology 58, 147–155 (2015).
doi: 10.1007/s12374-015-0103-z
Jiang, J. et al. WRKY transcription factors in plant responses to stresses. Journal of integrative plant biology 59, 86–101 (2017).
doi: 10.1111/jipb.12513 pubmed: 27995748 pmcid: 27995748
Ma, S., Dong, W., Lyu, T., Lyu, Y. & An, R. N. A. sequencing transcriptome analysis and development of EST-SSR markers in Chinese hawthorn through Illumina sequencing. Forests 10, 82 (2019).
doi: 10.3390/f10020082
Liu, Y. et al. Genetic Structure and Diversity of Glycyrrhiza Populations Based on Transcriptome SSR Markers. Plant Molecular Biology Reporter 37, 401–412 (2019).
doi: 10.1007/s11105-019-01165-2
Tulsani, N. J. et al. Transcriptome landscaping for gene mining and SSR marker development in Coriander (Coriandrum sativum L.). Genomics (2019).
Taheri, S. et al. De novo assembly of transcriptomes, mining, and development of novel EST-SSR markers in Curcuma alismatifolia (Zingiberaceae family) through Illumina sequencing. Scientific reports 9, 1–14 (2019).
doi: 10.1038/s41598-018-37186-2
Kantety, R. V., La Rota, M., Matthews, D. E. & Sorrells, M. E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant molecular biology 48, 501–510 (2002).
doi: 10.1023/A:1014875206165 pubmed: 11999831 pmcid: 11999831
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
doi: 10.1093/bioinformatics/bts565 pubmed: 23060610 pmcid: 23060610
Huang, X. & Madan, A. CAP3: A DNA sequence assembly program. Genome research 9, 868–877 (1999).
doi: 10.1101/gr.9.9.868 pubmed: 10508846 pmcid: 10508846
Min, X. J., Butler, G., Storms, R. & Tsang, A. OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic acids research 33, W677–W680 (2005).
doi: 10.1093/nar/gki394 pubmed: 15980561 pmcid: 15980561
Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C. & Kanehisa, M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic acids research 35, W182–W185 (2007).
doi: 10.1093/nar/gkm321 pubmed: 17526522 pmcid: 17526522
Wu, S., Zhu, Z., Fu, L., Niu, B. & Li, W. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC genomics 12, 444 (2011).
doi: 10.1186/1471-2164-12-444 pubmed: 21899761 pmcid: 21899761
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics 12, 323 (2011).
doi: 10.1186/1471-2105-12-323 pubmed: 21816040 pmcid: 21816040
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C T method. Nature protocols 3, 1101 (2008).
doi: 10.1038/nprot.2008.73 pubmed: 18546601 pmcid: 18546601
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 13, 2498–2504 (2003).
doi: 10.1101/gr.1239303 pubmed: 14597658 pmcid: 14597658
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature protocols 8, 1494 (2013).
doi: 10.1038/nprot.2013.084 pubmed: 23845962 pmcid: 23845962

Auteurs

Soumya Shree Nayak (SS)

Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, 751023, India.

Seema Pradhan (S)

Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, 751023, India.

Dinabandhu Sahoo (D)

Institute of Bioresources and Sustainable Development, Imphal, Manipur, 795001, India.

Ajay Parida (A)

Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, 751023, India. drajayparida@gmail.com.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH