Design principles of a minimal auxin response system.
Journal
Nature plants
ISSN: 2055-0278
Titre abrégé: Nat Plants
Pays: England
ID NLM: 101651677
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
06
09
2019
accepted:
09
04
2020
entrez:
17
5
2020
pubmed:
18
5
2020
medline:
10
2
2021
Statut:
ppublish
Résumé
Auxin controls numerous growth processes in land plants through a gene expression system that modulates ARF transcription factor activity
Identifiants
pubmed: 32415296
doi: 10.1038/s41477-020-0662-y
pii: 10.1038/s41477-020-0662-y
doi:
Substances chimiques
Indoleacetic Acids
0
Plant Growth Regulators
0
Plant Proteins
0
Transcription Factors
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
473-482Commentaires et corrections
Type : CommentIn
Références
Du, Y. & Scheres, B. Lateral root formation and the multiple roles of auxin. J. Exp. Bot. 69, 155–167 (2018).
pubmed: 28992266
doi: 10.1093/jxb/erx223
Vanneste, S. & Friml, J. Auxin: a trigger for change in plant development. Cell 136, 1005–1016 (2009).
doi: 10.1016/j.cell.2009.03.001
pubmed: 19303845
Weijers, D. & Wagner, D. Transcriptional responses to the auxin hormone. Annu. Rev. Plant Biol. 67, 539–574 (2016).
pubmed: 26905654
doi: 10.1146/annurev-arplant-043015-112122
Mutte, S. K. et al. Origin and evolution of the nuclear auxin response system. eLife 7, e33399 (2018).
pubmed: 29580381
pmcid: 5873896
doi: 10.7554/eLife.33399
Flores-Sandoval, E. et al. Class C ARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha. New Phytol. 218, 1612–1630 (2018).
pubmed: 29574879
doi: 10.1111/nph.15090
Finet, C., Berne-Dedieu, A., Scutt, C. P. & Marlétaz, F. Evolution of the ARF gene family in land plants: old domains, new tricks. Mol. Biol. Evol. 30, 45–56 (2013).
pubmed: 22977118
doi: 10.1093/molbev/mss220
Ulmasov, T., Hagen, G. & Guilfoyle, T. J. Activation and repression of transcription by auxin response factors. Proc. Natl Acad. Sci. USA 96, 5844–5849 (1999).
pubmed: 10318972
doi: 10.1073/pnas.96.10.5844
pmcid: 21948
Vernoux, T. et al. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol. Syst. Biol. 7, 508 (2011).
pubmed: 21734647
pmcid: 3167386
doi: 10.1038/msb.2011.39
Piya, S., Shrestha, S. K., Binder, B., Stewart, C. N. Jr. & Hewezi, T. Protein–protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis. Front. Plant Sci. 5, 744 (2014).
pubmed: 25566309
pmcid: 4274898
doi: 10.3389/fpls.2014.00744
Lavy, M. et al. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins. eLife 5, e13325 (2016).
pubmed: 27247276
pmcid: 4889330
doi: 10.7554/eLife.13325
Zhao, Z. et al. Hormonal control of the shoot stem-cell niche. Nature 465, 1089–1092 (2010).
pubmed: 20577215
doi: 10.1038/nature09126
Boer, D. R. et al. Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell 156, 577–589 (2014).
pubmed: 24485461
doi: 10.1016/j.cell.2013.12.027
Hori, K. et al. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun. 5, 3978 (2014).
pubmed: 24865297
doi: 10.1038/ncomms4978
Bowman, J. L. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287–304 (2017).
pubmed: 28985561
doi: 10.1016/j.cell.2017.09.030
Kato, H. et al. Auxin-mediated transcriptional system with a minimal set of components is critical for morphogenesis through the life cycle in Marchantia polymorpha. PLoS Genet. 11, e1005084 (2015).
pubmed: 26020919
pmcid: 4447296
doi: 10.1371/journal.pgen.1005084
Flores-Sandoval, E., Eklund, D. M. & Bowman, J. L. A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha. PLoS Genet. 11, e1005207 (2015).
pubmed: 26020649
pmcid: 4447368
doi: 10.1371/journal.pgen.1005207
Kato, H. et al. The roles of the sole activator-type auxin response factor in pattern formation of Marchantia polymorpha. Plant Cell Physiol. 58, 1642–1651 (2017).
pubmed: 29016901
doi: 10.1093/pcp/pcx095
Flores-Sandoval, E., Romani, F. & Bowman, J. L. Co-expression and transcriptome analysis of Marchantia polymorpha transcription factors supports class C ARFs as independent actors of an ancient auxin regulatory module. Front. Plant Sci. 9, 1345 (2018).
pubmed: 30327658
pmcid: 6174852
doi: 10.3389/fpls.2018.01345
Tiwari, S. B., Hagen, G. & Guilfoyle, T. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15, 533–543 (2003).
pubmed: 12566590
pmcid: 141219
doi: 10.1105/tpc.008417
Choi, H. S., Seo, M. & Cho, H. T. Two TPL-binding motifs of ARF2 are involved in repression of auxin responses. Front. Plant Sci. 9, 372 (2018).
pubmed: 29619039
pmcid: 5871684
doi: 10.3389/fpls.2018.00372
Korasick, D. A. et al. Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proc. Natl Acad. Sci. USA 111, 5427–5432 (2014).
pubmed: 24706860
doi: 10.1073/pnas.1400074111
pmcid: 3986151
Nanao, M. H. et al. Structural basis for oligomerization of auxin transcriptional regulators. Nat. Commun. 5, 3617 (2014).
pubmed: 24710426
doi: 10.1038/ncomms4617
Sayou, C. et al. A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor. Nat. Commun. 7, 11222 (2016).
pubmed: 27097556
pmcid: 4844672
doi: 10.1038/ncomms11222
Ishizaki, K. et al. Development of Gateway binary vector series with four different selection markers for the liverwort Marchantia polymorpha. PLoS ONE 10, e0138876 (2015).
pubmed: 26406247
pmcid: 4583185
doi: 10.1371/journal.pone.0138876
Ishizaki, K., Johzuka-Hisatomi, Y., Ishida, S., Iida, S. & Kohchi, T. Homologous recombination-mediated gene targeting in the liverwort Marchantia polymorpha L. Sci. Rep. 3, 1532 (2013).
pubmed: 23524944
pmcid: 3607118
doi: 10.1038/srep01532
Sugano, S. S. et al. Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS ONE 13, e0205117 (2018).
pubmed: 30379827
pmcid: 6209168
doi: 10.1371/journal.pone.0205117
Nishihama, R., Ishida, S., Urawa, H., Kamei, Y. & Kohchi, T. Conditional gene expression/deletion systems for Marchantia polymorpha using its own Heat-Shock promoter and Cre/loxP-mediated site-specific recombination. Plant Cell Physiol. 57, 271–280 (2016).
pubmed: 26148498
doi: 10.1093/pcp/pcv102
Hohlbein, J., Craggs, T. D. & Cordes, T. Alternating-laser excitation: single-molecule FRET and beyond. Chem. Soc. Rev. 43, 1156–1171 (2014).
pubmed: 24037326
doi: 10.1039/C3CS60233H
Leyser, O. Auxin signaling. Plant Physiol. 176, 465–479 (2018).
pubmed: 28818861
doi: 10.1104/pp.17.00765
Rademacher, E. H. et al. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J. 68, 597–606 (2011).
pubmed: 21831209
doi: 10.1111/j.1365-313X.2011.04710.x
Chiyoda, S., Ishizaki, K., Kataoka, H., Yamato, K. T. & Kohchi, T. Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. Plant Cell Rep. 27, 1467–1473 (2008).
pubmed: 18553085
doi: 10.1007/s00299-008-0570-5
Ishizaki, K., Chiyoda, S., Yamato, K. T. & Kohchi, T. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol. 49, 1084–1091 (2008).
pubmed: 18535011
doi: 10.1093/pcp/pcn085
Kubota, A., Ishizaki, K., Hosaka, M. & Kohchi, T. Efficient agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci. Biotechnol. Biochem. 77, 167–172 (2013).
pubmed: 23291762
doi: 10.1271/bbb.120700
Zhang, Y., Werling, U. & Edelmann, W. SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res. 40, e55 (2012).
pubmed: 22241772
pmcid: 3333860
doi: 10.1093/nar/gkr1288
Juanhuix, J. et al. Developments in optics and performance at BL13-XALOC, the macromolecular crystallography beamline at the ALBA Synchrotron. J. Synchrotron Radiat. 21, 679–689 (2014).
pubmed: 24971961
pmcid: 4073956
doi: 10.1107/S160057751400825X
Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D 67, 293–302 (2011).
pubmed: 21460447
doi: 10.1107/S0907444911007773
pmcid: 3069744
Tickle, I. J. et al. STARANISO (Global Phasing Ltd., 2018); http://staraniso.globalphasing.org/cgi-bin/staraniso.cgi
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 19461840
pmcid: 2483472
doi: 10.1107/S0021889807021206
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702
doi: 10.1107/S0907444909052925
pmcid: 2815670
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 54, 5.6.1–5.6.37 (2016).
doi: 10.1002/cpbi.3
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).
pubmed: 25950237
pmcid: 5298202
doi: 10.1038/nprot.2015.053
van Zundert, G. C. P. et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).
pubmed: 26410586
doi: 10.1016/j.jmb.2015.09.014
Truernit, E. et al. High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. Plant Cell 20, 1494–1503 (2008).
pubmed: 18523061
pmcid: 2483377
doi: 10.1105/tpc.107.056069
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772
doi: 10.1038/nmeth.2019
Raissig, M. T., Gagliardini, V., Jaenisch, J., Grossniklaus, U. & Baroux, C. Efficient and rapid isolation of early-stage embryos from Arabidopsis thaliana seeds. J. Vis. Exp. 76, e50371 (2013).
Trombetta, J. J. et al. Preparation of single-cell RNA-Seq libraries for next generation sequencing. Curr. Protoc. Mol. Biol. 107, 4.22.1–4.22.17 (2014).
doi: 10.1002/0471142727.mb0422s107
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142
pmcid: 4655817
doi: 10.1038/nmeth.3317
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Freire-Rios, A., Radoeva, T., De Rybel, B., Weijers, D. & Borst, J. W. FRET-FLIM for visualizing and quantifying protein interactions in live plant cells. Meth. Mol. Biol. 1497, 135–146 (2017).
doi: 10.1007/978-1-4939-6469-7_13
Matsuo, N., Minami, M., Maeda, T. & Hiratsuka, K. Dual luciferase assay for monitoring transient gene expression in higher plants. Plant Biotechnol. 18, 71–75 (2001).
doi: 10.5511/plantbiotechnology.18.71
Akagi, T., Ikegami, A. & Yonemori, K. DkMyb2 wound-induced transcription factor of persimmon (Diospyros kaki Thunb.), contributes to proanthocyanidin regulation. Planta 232, 1045–1059 (2010).
pubmed: 20690029
doi: 10.1007/s00425-010-1241-7
van Dijk, M. & Bonvin, A. M. 3D-DART: a DNA structure modelling server. Nucleic Acids Res. 37, W235–W239 (2009).
pubmed: 19417072
pmcid: 2703913
doi: 10.1093/nar/gkp287
Kalinin, S. et al. A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nat. Methods 9, 1218–1225 (2012).
pubmed: 23142871
doi: 10.1038/nmeth.2222
Craggs, T. D. et al. Substrate conformational dynamics drive structure-specific recognition of gapped DNA by DNA polymerase. Nucleic Acids Res. 47, 10788–10800 (2019).
pubmed: 31544938
pmcid: 6846080
doi: 10.1093/nar/gkz797
Farooq, S. & Hohlbein, J. Camera-based single-molecule FRET detection with improved time resolution. Phys. Chem. Chem. Phys. 17, 27862–27872 (2015).
pubmed: 26439729
doi: 10.1039/C5CP04137F
Cordes, T., Vogelsang, J. & Tinnefeld, P. On the mechanism of Trolox as antiblinking and antibleaching reagent. J. Am. Chem. Soc. 131, 5018–5019 (2009).
pubmed: 19301868
doi: 10.1021/ja809117z
Rasnik, I., McKinney, S. A. & Ha, T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods 3, 891–893 (2006).
pubmed: 17013382
doi: 10.1038/nmeth934
Evans, G. W., Hohlbein, J., Craggs, T., Aigrain, L. & Kapanidis, A. N. Real-time single-molecule studies of the motions of DNA polymerase fingers illuminate DNA synthesis mechanisms. Nucleic Acids Res. 43, 5998–6008 (2015).
pubmed: 26013816
pmcid: 4499156
doi: 10.1093/nar/gkv547