Design principles of a minimal auxin response system.


Journal

Nature plants
ISSN: 2055-0278
Titre abrégé: Nat Plants
Pays: England
ID NLM: 101651677

Informations de publication

Date de publication:
05 2020
Historique:
received: 06 09 2019
accepted: 09 04 2020
entrez: 17 5 2020
pubmed: 18 5 2020
medline: 10 2 2021
Statut: ppublish

Résumé

Auxin controls numerous growth processes in land plants through a gene expression system that modulates ARF transcription factor activity

Identifiants

pubmed: 32415296
doi: 10.1038/s41477-020-0662-y
pii: 10.1038/s41477-020-0662-y
doi:

Substances chimiques

Indoleacetic Acids 0
Plant Growth Regulators 0
Plant Proteins 0
Transcription Factors 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

473-482

Commentaires et corrections

Type : CommentIn

Références

Du, Y. & Scheres, B. Lateral root formation and the multiple roles of auxin. J. Exp. Bot. 69, 155–167 (2018).
pubmed: 28992266 doi: 10.1093/jxb/erx223
Vanneste, S. & Friml, J. Auxin: a trigger for change in plant development. Cell 136, 1005–1016 (2009).
doi: 10.1016/j.cell.2009.03.001 pubmed: 19303845
Weijers, D. & Wagner, D. Transcriptional responses to the auxin hormone. Annu. Rev. Plant Biol. 67, 539–574 (2016).
pubmed: 26905654 doi: 10.1146/annurev-arplant-043015-112122
Mutte, S. K. et al. Origin and evolution of the nuclear auxin response system. eLife 7, e33399 (2018).
pubmed: 29580381 pmcid: 5873896 doi: 10.7554/eLife.33399
Flores-Sandoval, E. et al. Class C ARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha. New Phytol. 218, 1612–1630 (2018).
pubmed: 29574879 doi: 10.1111/nph.15090
Finet, C., Berne-Dedieu, A., Scutt, C. P. & Marlétaz, F. Evolution of the ARF gene family in land plants: old domains, new tricks. Mol. Biol. Evol. 30, 45–56 (2013).
pubmed: 22977118 doi: 10.1093/molbev/mss220
Ulmasov, T., Hagen, G. & Guilfoyle, T. J. Activation and repression of transcription by auxin response factors. Proc. Natl Acad. Sci. USA 96, 5844–5849 (1999).
pubmed: 10318972 doi: 10.1073/pnas.96.10.5844 pmcid: 21948
Vernoux, T. et al. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol. Syst. Biol. 7, 508 (2011).
pubmed: 21734647 pmcid: 3167386 doi: 10.1038/msb.2011.39
Piya, S., Shrestha, S. K., Binder, B., Stewart, C. N. Jr. & Hewezi, T. Protein–protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis. Front. Plant Sci. 5, 744 (2014).
pubmed: 25566309 pmcid: 4274898 doi: 10.3389/fpls.2014.00744
Lavy, M. et al. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins. eLife 5, e13325 (2016).
pubmed: 27247276 pmcid: 4889330 doi: 10.7554/eLife.13325
Zhao, Z. et al. Hormonal control of the shoot stem-cell niche. Nature 465, 1089–1092 (2010).
pubmed: 20577215 doi: 10.1038/nature09126
Boer, D. R. et al. Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell 156, 577–589 (2014).
pubmed: 24485461 doi: 10.1016/j.cell.2013.12.027
Hori, K. et al. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun. 5, 3978 (2014).
pubmed: 24865297 doi: 10.1038/ncomms4978
Bowman, J. L. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287–304 (2017).
pubmed: 28985561 doi: 10.1016/j.cell.2017.09.030
Kato, H. et al. Auxin-mediated transcriptional system with a minimal set of components is critical for morphogenesis through the life cycle in Marchantia polymorpha. PLoS Genet. 11, e1005084 (2015).
pubmed: 26020919 pmcid: 4447296 doi: 10.1371/journal.pgen.1005084
Flores-Sandoval, E., Eklund, D. M. & Bowman, J. L. A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha. PLoS Genet. 11, e1005207 (2015).
pubmed: 26020649 pmcid: 4447368 doi: 10.1371/journal.pgen.1005207
Kato, H. et al. The roles of the sole activator-type auxin response factor in pattern formation of Marchantia polymorpha. Plant Cell Physiol. 58, 1642–1651 (2017).
pubmed: 29016901 doi: 10.1093/pcp/pcx095
Flores-Sandoval, E., Romani, F. & Bowman, J. L. Co-expression and transcriptome analysis of Marchantia polymorpha transcription factors supports class C ARFs as independent actors of an ancient auxin regulatory module. Front. Plant Sci. 9, 1345 (2018).
pubmed: 30327658 pmcid: 6174852 doi: 10.3389/fpls.2018.01345
Tiwari, S. B., Hagen, G. & Guilfoyle, T. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15, 533–543 (2003).
pubmed: 12566590 pmcid: 141219 doi: 10.1105/tpc.008417
Choi, H. S., Seo, M. & Cho, H. T. Two TPL-binding motifs of ARF2 are involved in repression of auxin responses. Front. Plant Sci. 9, 372 (2018).
pubmed: 29619039 pmcid: 5871684 doi: 10.3389/fpls.2018.00372
Korasick, D. A. et al. Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proc. Natl Acad. Sci. USA 111, 5427–5432 (2014).
pubmed: 24706860 doi: 10.1073/pnas.1400074111 pmcid: 3986151
Nanao, M. H. et al. Structural basis for oligomerization of auxin transcriptional regulators. Nat. Commun. 5, 3617 (2014).
pubmed: 24710426 doi: 10.1038/ncomms4617
Sayou, C. et al. A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor. Nat. Commun. 7, 11222 (2016).
pubmed: 27097556 pmcid: 4844672 doi: 10.1038/ncomms11222
Ishizaki, K. et al. Development of Gateway binary vector series with four different selection markers for the liverwort Marchantia polymorpha. PLoS ONE 10, e0138876 (2015).
pubmed: 26406247 pmcid: 4583185 doi: 10.1371/journal.pone.0138876
Ishizaki, K., Johzuka-Hisatomi, Y., Ishida, S., Iida, S. & Kohchi, T. Homologous recombination-mediated gene targeting in the liverwort Marchantia polymorpha L. Sci. Rep. 3, 1532 (2013).
pubmed: 23524944 pmcid: 3607118 doi: 10.1038/srep01532
Sugano, S. S. et al. Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS ONE 13, e0205117 (2018).
pubmed: 30379827 pmcid: 6209168 doi: 10.1371/journal.pone.0205117
Nishihama, R., Ishida, S., Urawa, H., Kamei, Y. & Kohchi, T. Conditional gene expression/deletion systems for Marchantia polymorpha using its own Heat-Shock promoter and Cre/loxP-mediated site-specific recombination. Plant Cell Physiol. 57, 271–280 (2016).
pubmed: 26148498 doi: 10.1093/pcp/pcv102
Hohlbein, J., Craggs, T. D. & Cordes, T. Alternating-laser excitation: single-molecule FRET and beyond. Chem. Soc. Rev. 43, 1156–1171 (2014).
pubmed: 24037326 doi: 10.1039/C3CS60233H
Leyser, O. Auxin signaling. Plant Physiol. 176, 465–479 (2018).
pubmed: 28818861 doi: 10.1104/pp.17.00765
Rademacher, E. H. et al. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J. 68, 597–606 (2011).
pubmed: 21831209 doi: 10.1111/j.1365-313X.2011.04710.x
Chiyoda, S., Ishizaki, K., Kataoka, H., Yamato, K. T. & Kohchi, T. Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. Plant Cell Rep. 27, 1467–1473 (2008).
pubmed: 18553085 doi: 10.1007/s00299-008-0570-5
Ishizaki, K., Chiyoda, S., Yamato, K. T. & Kohchi, T. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol. 49, 1084–1091 (2008).
pubmed: 18535011 doi: 10.1093/pcp/pcn085
Kubota, A., Ishizaki, K., Hosaka, M. & Kohchi, T. Efficient agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci. Biotechnol. Biochem. 77, 167–172 (2013).
pubmed: 23291762 doi: 10.1271/bbb.120700
Zhang, Y., Werling, U. & Edelmann, W. SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res. 40, e55 (2012).
pubmed: 22241772 pmcid: 3333860 doi: 10.1093/nar/gkr1288
Juanhuix, J. et al. Developments in optics and performance at BL13-XALOC, the macromolecular crystallography beamline at the ALBA Synchrotron. J. Synchrotron Radiat. 21, 679–689 (2014).
pubmed: 24971961 pmcid: 4073956 doi: 10.1107/S160057751400825X
Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D 67, 293–302 (2011).
pubmed: 21460447 doi: 10.1107/S0907444911007773 pmcid: 3069744
Tickle, I. J. et al. STARANISO (Global Phasing Ltd., 2018); http://staraniso.globalphasing.org/cgi-bin/staraniso.cgi
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 19461840 pmcid: 2483472 doi: 10.1107/S0021889807021206
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702 doi: 10.1107/S0907444909052925 pmcid: 2815670
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 54, 5.6.1–5.6.37 (2016).
doi: 10.1002/cpbi.3
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).
pubmed: 25950237 pmcid: 5298202 doi: 10.1038/nprot.2015.053
van Zundert, G. C. P. et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).
pubmed: 26410586 doi: 10.1016/j.jmb.2015.09.014
Truernit, E. et al. High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. Plant Cell 20, 1494–1503 (2008).
pubmed: 18523061 pmcid: 2483377 doi: 10.1105/tpc.107.056069
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Raissig, M. T., Gagliardini, V., Jaenisch, J., Grossniklaus, U. & Baroux, C. Efficient and rapid isolation of early-stage embryos from Arabidopsis thaliana seeds. J. Vis. Exp. 76, e50371 (2013).
Trombetta, J. J. et al. Preparation of single-cell RNA-Seq libraries for next generation sequencing. Curr. Protoc. Mol. Biol. 107, 4.22.1–4.22.17 (2014).
doi: 10.1002/0471142727.mb0422s107
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142 pmcid: 4655817 doi: 10.1038/nmeth.3317
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Freire-Rios, A., Radoeva, T., De Rybel, B., Weijers, D. & Borst, J. W. FRET-FLIM for visualizing and quantifying protein interactions in live plant cells. Meth. Mol. Biol. 1497, 135–146 (2017).
doi: 10.1007/978-1-4939-6469-7_13
Matsuo, N., Minami, M., Maeda, T. & Hiratsuka, K. Dual luciferase assay for monitoring transient gene expression in higher plants. Plant Biotechnol. 18, 71–75 (2001).
doi: 10.5511/plantbiotechnology.18.71
Akagi, T., Ikegami, A. & Yonemori, K. DkMyb2 wound-induced transcription factor of persimmon (Diospyros kaki Thunb.), contributes to proanthocyanidin regulation. Planta 232, 1045–1059 (2010).
pubmed: 20690029 doi: 10.1007/s00425-010-1241-7
van Dijk, M. & Bonvin, A. M. 3D-DART: a DNA structure modelling server. Nucleic Acids Res. 37, W235–W239 (2009).
pubmed: 19417072 pmcid: 2703913 doi: 10.1093/nar/gkp287
Kalinin, S. et al. A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nat. Methods 9, 1218–1225 (2012).
pubmed: 23142871 doi: 10.1038/nmeth.2222
Craggs, T. D. et al. Substrate conformational dynamics drive structure-specific recognition of gapped DNA by DNA polymerase. Nucleic Acids Res. 47, 10788–10800 (2019).
pubmed: 31544938 pmcid: 6846080 doi: 10.1093/nar/gkz797
Farooq, S. & Hohlbein, J. Camera-based single-molecule FRET detection with improved time resolution. Phys. Chem. Chem. Phys. 17, 27862–27872 (2015).
pubmed: 26439729 doi: 10.1039/C5CP04137F
Cordes, T., Vogelsang, J. & Tinnefeld, P. On the mechanism of Trolox as antiblinking and antibleaching reagent. J. Am. Chem. Soc. 131, 5018–5019 (2009).
pubmed: 19301868 doi: 10.1021/ja809117z
Rasnik, I., McKinney, S. A. & Ha, T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods 3, 891–893 (2006).
pubmed: 17013382 doi: 10.1038/nmeth934
Evans, G. W., Hohlbein, J., Craggs, T., Aigrain, L. & Kapanidis, A. N. Real-time single-molecule studies of the motions of DNA polymerase fingers illuminate DNA synthesis mechanisms. Nucleic Acids Res. 43, 5998–6008 (2015).
pubmed: 26013816 pmcid: 4499156 doi: 10.1093/nar/gkv547

Auteurs

Hirotaka Kato (H)

Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands.
Graduate School of Science, Kobe University, Kobe, Japan.

Sumanth K Mutte (SK)

Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands.

Hidemasa Suzuki (H)

Graduate School of Biostudies, Kyoto University, Kyoto, Japan.

Isidro Crespo (I)

Alba Synchrotron, Cerdanyola del Vallès, Barcelona, Spain.

Shubhajit Das (S)

Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands.

Tatyana Radoeva (T)

Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands.

Mattia Fontana (M)

Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands.
Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands.

Yoshihiro Yoshitake (Y)

Graduate School of Biostudies, Kyoto University, Kyoto, Japan.

Emi Hainiwa (E)

Graduate School of Biostudies, Kyoto University, Kyoto, Japan.

Willy van den Berg (W)

Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands.

Simon Lindhoud (S)

Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands.

Kimitsune Ishizaki (K)

Graduate School of Science, Kobe University, Kobe, Japan.

Johannes Hohlbein (J)

Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands.

Jan Willem Borst (JW)

Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands.

D Roeland Boer (DR)

Alba Synchrotron, Cerdanyola del Vallès, Barcelona, Spain.

Ryuichi Nishihama (R)

Graduate School of Biostudies, Kyoto University, Kyoto, Japan.

Takayuki Kohchi (T)

Graduate School of Biostudies, Kyoto University, Kyoto, Japan.

Dolf Weijers (D)

Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands. dolf.weijers@wur.nl.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.

Akina Mori, Marjolein Vermeer, Lenie J van den Broek et al.
1.00
Humans Bronchi Lab-On-A-Chip Devices Epithelial Cells Goblet Cells
Triticum Transcription Factors Gene Expression Regulation, Plant Plant Proteins Salt Stress

Classifications MeSH