Dual lysine and N-terminal acetyltransferases reveal the complexity underpinning protein acetylation.
Acetylation
Arabidopsis
/ enzymology
Chloroplasts
/ enzymology
Chromatography, High Pressure Liquid
Chromatography, Liquid
Epigenome
Escherichia
/ genetics
Gene Knockout Techniques
Genome, Plant
In Vitro Techniques
Lysine
/ chemistry
N-Terminal Acetyltransferases
/ chemistry
Peptides
/ chemistry
Phylogeny
Plant Proteins
/ genetics
Plastids
/ enzymology
Recombinant Proteins
Tandem Mass Spectrometry
acetylome
acetyltransferase
co- and post-translational modifications
plastid
quantitative proteomics
Journal
Molecular systems biology
ISSN: 1744-4292
Titre abrégé: Mol Syst Biol
Pays: England
ID NLM: 101235389
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
20
01
2020
revised:
18
05
2020
accepted:
20
05
2020
entrez:
8
7
2020
pubmed:
8
7
2020
medline:
15
7
2021
Statut:
ppublish
Résumé
Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and ε-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.
Identifiants
pubmed: 32633465
doi: 10.15252/msb.20209464
pmc: PMC7339202
doi:
Substances chimiques
Peptides
0
Plant Proteins
0
Recombinant Proteins
0
N-Terminal Acetyltransferases
EC 2.3.1.88
Lysine
K3Z4F929H6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e9464Informations de copyright
© 2020 The Authors. Published under the terms of the CC BY 4.0 license.
Références
Nature. 2000 Nov 30;408(6812):613-5
pubmed: 11117752
Mol Cell. 2011 Oct 7;44(1):39-50
pubmed: 21981917
J Biol Chem. 2009 Nov 6;284(45):31122-9
pubmed: 19744929
Plant Cell. 2018 Aug;30(8):1695-1709
pubmed: 29967049
Nat Chem Biol. 2018 Jul;14(7):671-679
pubmed: 29892081
Annu Rev Biophys Biomol Struct. 2000;29:81-103
pubmed: 10940244
Trends Biochem Sci. 2016 Sep;41(9):746-760
pubmed: 27498224
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549
pubmed: 29722887
Nat Biotechnol. 2016 Jan;34(1):104-10
pubmed: 26641532
Traffic. 2017 Oct;18(10):646-657
pubmed: 28753226
Biochim Biophys Acta. 2016 May;1864(5):531-50
pubmed: 26555180
Structure. 2016 Jul 6;24(7):1044-56
pubmed: 27320834
mBio. 2019 Apr 9;10(2):
pubmed: 30967470
Plant J. 2019 Jul;99(1):176-194
pubmed: 30920011
Nat Commun. 2020 Mar 13;11(1):1361
pubmed: 32170184
Oncotarget. 2016 Sep 27;7(39):63306-63323
pubmed: 27542228
Bioinformatics. 2007 Nov 1;23(21):2947-8
pubmed: 17846036
Photosynth Res. 2020 Jul;145(1):15-30
pubmed: 31975158
Nat Commun. 2015 Jul 17;6:7640
pubmed: 26184543
J Struct Funct Genomics. 2008 Dec;9(1-4):7-20
pubmed: 18709443
PLoS Genet. 2011 Jul;7(7):e1002169
pubmed: 21750686
Cell. 2002 Nov 27;111(5):709-20
pubmed: 12464182
Nat Commun. 2020 Feb 26;11(1):1067
pubmed: 32103017
Redox Biol. 2018 Oct;19:364-374
pubmed: 30237125
Proc Natl Acad Sci U S A. 2009 May 19;106(20):8157-62
pubmed: 19420222
Plant J. 1998 Dec;16(6):735-43
pubmed: 10069079
Plant Physiol. 2008 Nov;148(3):1354-67
pubmed: 18768906
PLoS One. 2018 Sep 28;13(9):e0204687
pubmed: 30265683
Nat Protoc. 2007;2(4):953-71
pubmed: 17446895
Proteomics. 2015 Jul;15(14):2426-35
pubmed: 25951519
Cell. 1996 Mar 22;84(6):843-51
pubmed: 8601308
PLoS One. 2014 Aug 13;9(8):e102348
pubmed: 25118709
PLoS One. 2008 Apr 23;3(4):e1994
pubmed: 18431481
Nucleic Acids Res. 2017 Jan 4;45(D1):D1100-D1106
pubmed: 27924013
Mol Syst Biol. 2017 Oct 23;13(10):949
pubmed: 29061669
Proteomics. 2015 Jul;15(14):2385-401
pubmed: 25914051
Mol Biol Cell. 2011 Feb 15;22(4):448-56
pubmed: 21177827
BMC Biochem. 2009 May 29;10:15
pubmed: 19480662
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3752-3757
pubmed: 30808761
Nat Methods. 2014 Mar;11(3):319-24
pubmed: 24487582
Mol Syst Biol. 2020 Jul;16(7):e9464
pubmed: 32633465
J Pineal Res. 2014 Nov;57(4):418-26
pubmed: 25250906
Biochem J. 2005 Mar 15;386(Pt 3):433-43
pubmed: 15496142
Nat Commun. 2020 Feb 28;11(1):1132
pubmed: 32111831
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
Nucleic Acids Res. 2013 Jan;41(Database issue):D344-7
pubmed: 23161676
FEBS J. 2013 Nov;280(22):5570-81
pubmed: 23742047
ACS Chem Biol. 2015 Jan 16;10(1):85-94
pubmed: 25591746
Mitochondrion. 2014 Nov;19 Pt B:252-60
pubmed: 24727099
FEBS Lett. 2006 Apr 3;580(8):1911-8
pubmed: 16500650
Plant Physiol. 2011 Apr;155(4):1779-90
pubmed: 21311031
Plant Physiol. 2015 Nov;169(3):1881-96
pubmed: 26371235
Plant Physiol. 2020 Aug;183(4):1502-1516
pubmed: 32461302
J Biol Chem. 2016 Mar 4;291(10):5270-7
pubmed: 26755727
mBio. 2018 Oct 23;9(5):
pubmed: 30352934
Plant Physiol. 2015 Dec;169(4):2874-83
pubmed: 26438789
PLoS One. 2011;6(9):e24713
pubmed: 21935442
Plant Cell. 2011 Nov;23(11):3911-28
pubmed: 22128122
BMC Bioinformatics. 2017 Mar 20;18(1):182
pubmed: 28320318
Methods Mol Biol. 2015;1305:107-21
pubmed: 25910729
Methods Mol Biol. 2017;1653:65-81
pubmed: 28822126
Plant Physiol. 2007 Dec;145(4):1144-54
pubmed: 18056864
Sci Rep. 2016 Feb 10;6:21304
pubmed: 26861501
Mol Cell Proteomics. 2012 Jun;11(6):M111.015131
pubmed: 22223895
Nucleic Acids Res. 2015 Jul 1;43(W1):W389-94
pubmed: 25883141
Nucleic Acids Res. 2007 Jan;35(Database issue):D213-8
pubmed: 17071959
Proteomics. 2008 Jul;8(14):2809-31
pubmed: 18655050
Nucleic Acids Res. 2008 Jan;36(Database issue):D245-9
pubmed: 18003654
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D247-51
pubmed: 16381856
J Biol Chem. 2011 Oct 21;286(42):37002-10
pubmed: 21900231
Nat Commun. 2014 Nov 07;5:5176
pubmed: 25376646
Nat Protoc. 2016 Dec;11(12):2301-2319
pubmed: 27809316
Arch Biochem Biophys. 2005 Jan 1;433(1):212-26
pubmed: 15581578
Nucleic Acids Res. 2017 Jan 4;45(D1):D1112-D1116
pubmed: 27789699
Trends Biochem Sci. 2020 Jul;45(7):619-632
pubmed: 32305250
Plant Methods. 2009 Nov 24;5:16
pubmed: 19930690
Chembiochem. 2016 Mar 2;17(5):398-402
pubmed: 26708127
Structure. 1999 May;7(5):497-507
pubmed: 10378269
Proteomics. 2011 May;11(9):1734-50
pubmed: 21462344
Int J Mol Sci. 2016 Jun 28;17(7):
pubmed: 27367672
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14652-7
pubmed: 23959863
Plant Physiol. 2020 Feb;182(2):792-806
pubmed: 31744933
Adv Bioinformatics. 2008;2008:420747
pubmed: 19956698
Mol Plant. 2016 Jul 6;9(7):1018-27
pubmed: 27109602
Int J Biochem Cell Biol. 2009 Dec;41(12):2528-37
pubmed: 19695338
Front Plant Sci. 2016 Feb 29;7:218
pubmed: 26973667
Nat Struct Mol Biol. 2013 Sep;20(9):1098-105
pubmed: 23912279
J Exp Bot. 2018 Aug 31;69(19):4555-4568
pubmed: 29945174
Methods Mol Biol. 2017;1574:17-34
pubmed: 28315241
Front Microbiol. 2019 Jul 12;10:1604
pubmed: 31354686
Trends Plant Sci. 2019 Oct;24(10):917-926
pubmed: 31300194
Mol Cell. 2019 Mar 21;73(6):1097-1114
pubmed: 30878283
Plant Physiol. 2015 Nov;169(3):1469-87
pubmed: 26338952
Nat Methods. 2009 Nov;6(11):786-7
pubmed: 19876014
Proteomics. 2015 Jul;15(14):2503-18
pubmed: 26017780
Plant Physiol. 2011 Apr;155(4):1769-78
pubmed: 21311030
Nature. 2016 Sep 14;537(7620):347-55
pubmed: 27629641
Biochimie. 2015 Jul;114:134-46
pubmed: 25450248
PLoS One. 2013 Sep 16;8(9):e74483
pubmed: 24066144
Nat Methods. 2016 Sep;13(9):731-40
pubmed: 27348712
Biochim Biophys Acta. 2015 Dec;1847(12):1539-48
pubmed: 26392145
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4399-4404
pubmed: 29581253
PLoS One. 2013;8(3):e58681
pubmed: 23536812
Plant J. 2010 Apr;62(2):215-23
pubmed: 20128883
PLoS One. 2009 Oct 14;4(10):e7451
pubmed: 19826488
Biochim Biophys Acta. 2016 Oct;1864(10):1372-401
pubmed: 27296530
Mol Biochem Parasitol. 2008 Aug;160(2):107-15
pubmed: 18534695
Nucleic Acids Res. 2015 Jul 1;43(W1):W543-6
pubmed: 25897125
Biosci Biotechnol Biochem. 2013;77(5):998-1007
pubmed: 23649264
Mol Gen Genet. 1989 May;217(1):6-12
pubmed: 2549369
Plant Cell. 2015 May;27(5):1547-62
pubmed: 25966763