Next-generation sequencing in a series of 80 fetuses with complex cardiac malformations and/or heterotaxy.
congenital heart defects
consanguinity
fetus
heterotaxy
midline anomaly
next-generation sequencing
Journal
Human mutation
ISSN: 1098-1004
Titre abrégé: Hum Mutat
Pays: United States
ID NLM: 9215429
Informations de publication
Date de publication:
12 2020
12 2020
Historique:
received:
14
02
2020
revised:
21
09
2020
accepted:
02
10
2020
pubmed:
2
11
2020
medline:
26
11
2021
entrez:
1
11
2020
Statut:
ppublish
Résumé
Herein, we report the screening of a large panel of genes in a series of 80 fetuses with congenital heart defects (CHDs) and/or heterotaxy and no cytogenetic anomalies. There were 49 males (61%/39%), with a family history in 28 cases (35%) and no parental consanguinity in 77 cases (96%). All fetuses had complex CHD except one who had heterotaxy and midline anomalies while 52 cases (65%) had heterotaxy in addition to CHD. Altogether, 29 cases (36%) had extracardiac and extra-heterotaxy anomalies. A pathogenic variant was found in 10/80 (12.5%) cases with a higher percentage in the heterotaxy group (8/52 cases, 15%) compared with the non-heterotaxy group (2/28 cases, 7%), and in 3 cases with extracardiac and extra-heterotaxy anomalies (3/29, 10%). The inheritance was recessive in six genes (DNAI1, GDF1, MMP21, MYH6, NEK8, and ZIC3) and dominant in two genes (SHH and TAB2). A homozygous pathogenic variant was found in three cases including only one case with known consanguinity. In conclusion, after removing fetuses with cytogenetic anomalies, next-generation sequencing discovered a causal variant in 12.5% of fetal cases with CHD and/or heterotaxy. Genetic counseling for future pregnancies was greatly improved. Surprisingly, unexpected consanguinity accounts for 20% of cases with identified pathogenic variants.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2167-2178Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Ackerman, J. P., Smestad, J. A., Tester, D. J., Qureshi, M. Y., Crabb, B. A., Mendelsohn, N. J., & Ackerman, M. J. (2016). Whole exome sequencing, familial genomic triangulation, and systems biology converge to identify a novel nonsense mutation in TAB2-encoded TGF-beta activated kinase 1 in a child with polyvalvular syndrome. Congenital Heart Disease, 11, 452-461.
Chhin, B., Hatayama, M., Bozon, D., Ogawa, M., Schön, P., Tohmonda, T., Sassolas, F., Aruga, J., Valard, A.-G., Chen, S.-C., & Bouvagnet, P. (2007). Elucidation of penetrance variability of a ZIC3 mutation in a family with complex heart defects and functional analysis of ZIC3 mutations in the first zinc finger domain. Human Mutation, 28, 563-570.
Dolk, H., Loane, M., & Garne, E., European Surveillance of Congenital Anomalies (EUROCAT) Working Group. (2011). Congenital heart defects in Europe: Prevalence and perinatal mortality, 2000 to 2005. Circulation, 123, 841-849.
Egbe, A., Uppu, S., Lee, S., Ho, D., & Srivastava, S. (2014). Changing prevalence of severe congenital heart disease: A population-based study. Pediatric Cardiology, 35, 1232-1238.
El Malti, R., Liu, H., Doray, B., Thauvin, C., Maltret, A., Dauphin, C., Gonçalves-Rocha, M., Teboul, M., Blanchet, P., Roume, J., Gronier, C., Ducreux, C., Veyrier, M., Marçon, F., Acar, P., Lusson, J. R., Levy, M., Beyler, C., Vigneron, J., … Bouvagnet, P. (2016). A systematic variant screening in familial cases of congenital heart defects demonstrates the usefulness of molecular genetics in this field. European Journal of Human Genetics, 24, 228-236.
Gebbia, M., Ferrero, G. B., Pilia, G., Bassi, M. T., Aylsworth, A., Penman-Splitt, M., Bird, L. M., Bamforth, J. S., Burn, J., Schlessinger, D., Nelson, D. L., & Casey, B. (1997). X-linked situs abnormalities result from mutations in ZIC3. Nature Genetics, 17, 305-308.
Guimier, A., Gabriel, G. C., Bajolle, F., Tsang, M., Liu, H., Noll, A., Schwartz, M., El Malti, R., Smith, L. D., Klena, N. T., Jimenez, G., Miller, N. A., Oufadem, M., Moreau de Bellaing, A., Yagi, H., Saunders, C. J., Baker, C. N., Di Filippo, S., Peterson, K. A., … Gordon, C. T. (2015). MMP21 is mutated in human heterotaxy and is required for normal left-right asymmetry in vertebrates. Nature Genetics, 47, 1260-1263.
Hartman, R. J., Rasmussen, S. A., Botto, L. D., Riehle-Colarusso, T., Martin, C. L., Cragan, J. D., Shin, M., & Correa, A. (2011). The contribution of chromosomal abnormalities to congenital heart defects: A population-based study. Pediatric Cardiology, 32, 1147-1157.
Hu, P., Qiao, F., Wang, Y., Meng, L., Ji, X., Luo, C., Xu, T., Zhou, R., Zhang, J., Yu, B., Wang, L., Wang, T., Pan, Q., Ma, D., Liang, D., & Xu, Z. (2018). Clinical application of targeted next-generation sequencing in fetuses with congenital heart defect. Ultrasound in Obstetrics and Gynecology, 52, 205-211.
Hureaux, M., Guterman, S., Hervé, B., Till, M., Jaillard, S., Redon, S., Valduga, M., Coutton, C., Missirian, C., Prieur, F., Simon-Bouy, B., Beneteau, C., Kuentz, P., Rooryck, C., Gruchy, N., Marle, N., Plutino, M., Tosca, L., Dupont, C., … Vialard, F. (2019). Chromosomal microarray analysis in fetuses with an isolated congenital heart defect: A retrospective, nationwide, multicenter study in France. Prenatal Diagnosis, 39, 464-470.
Jin, S. C., Homsy, J., Zaidi, S., Lu, Q., Morton, S., DePalma, S. R., Zeng, X., Qi, H., Chang, W., Sierant, M. C., Hung, W.-C., Haider, S., Zhang, J., Knight, J., Bjornson, R. D., Castaldi, C., Tikhonoa, I. R., Bilguvar, K., Mane, S. M., … Brueckner, M. (2017). Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nature Genetics, 49, 1593-1601.
Kaasinen, E., Aittomäki, K., Eronen, M., Vahteristo, P., Karhu, A., Mecklin, J.-P., Kajantie, E., Aaltonen, L. A., & Lehtonen, R. (2010). Recessively inherited right atrial isomerism caused by mutations in growth/differentiation factor 1 (GDF1). Human Molecular Genetics, 19, 2747-2753.
Lamont, R. E., Xi, Y., Popko, C., Lazier, J., Bernier, F. P., Lauzon, J. L., Innes, A. M., Parboosingh, J. S., & Thomas, M. A. (2018). Next-generation sequencing using a cardiac gene panel in prenatally diagnosed cardiac anomalies. Journal of Obstetrics and Gynaecology Canada (Journal d'obstétrique et gynécologie du Canada), 40, 1417-1423.
Nora, J. J., & Nora, A. H. (1978). The evolution of specific genetic and environmental counseling in congenital heart diseases. Circulation, 57, 205-213.
Pennarun, G., Escudier, E., Chapelin, C., Bridoux, A. M., Cacheux, V., Roger, G., Clément, A., Goossens, M., Amselem, S., & Duriez, B. (1999). Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. American Journal of Human Genetics, 65, 1508-1519.
Posch, M. G., Waldmuller, S., Müller, M., Scheffold, T., Fournier, D., Andrade-Navarro, M. A., De Geeter, B., Guillaumont, S., Dauphin, C., Yousseff, D., Schmitt, K. R., Perrot, A., Berger, F., Hetzer, R., Bouvagnet, P., & Özcelik, C. (2011). Cardiac alpha-myosin (MYH6) is the predominant sarcomeric disease gene for familial atrial septal defects. PLOS One, 6, e28872.
Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., & Rehm, H. L. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17, 405-424.
Ritelli, M., Morlino, S., Giacopuzzi, E., Bernardini, L., Torres, B., Santoro, G., Ravasio, V., Chiarelli, N., D'Angelantonio, D., Novelli, A., Grammatico, P., Colombi, M., & Castori, M. (2018). A recognizable systemic connective tissue disorder with polyvalvular heart dystrophy and dysmorphism associated with TAB2 mutations. Clinical Genetics, 93, 126-133.
Sifrim, A., Hitz, M.-P., Wilsdon, A., Breckpot, J., Turki, S. H. A., Thienpont, B., McRae, J., Fitzgerald, T. W., Singh, T., Swaminathan, G. J., Prigmore, E., Rajan, D., Abdul-Khaliq, H., Banka, S., Bauer, U. M. M., Bentham, J., Berger, F., Bhattacharya, S., Bu'Lock, F., … Hurles, M. E. (2016). Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nature Genetics, 48, 1060-1065.
Theis, J. L., Zimmermann, M. T., Evans, J. M., Eckloff, B. W., Wieben, E. D., Qureshi, M. Y., O'Leary, P. W., & Olson, T. M. (2015). Recessive MYH6 mutations in hypoplastic left heart with reduced ejection fraction. Circulation: Cardiovascular Genetics, 8, 564-571.
Turan, S., Asoglu, M. R., Gabbay-Benziv, R., Doyle, L., Harman, C., & Turan, O. M. (2018). Yield rate of chromosomal microarray analysis in fetuses with congenital heart defects. European Journal of Obstetrics, Gynecology and Reproductive Biology, 221, 172-176.
van der Linde, D., Konings, E. E. M., Slager, M. A., Witsenburg, M., Helbing, W. A., Takkenberg, J. J. M., & Roos-Hesselink, J. W. (2011). Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. Journal of the American College of Cardiology, 58, 2241-2247.
Wang, Y., Cao, L., Liang, D., Meng, L., Wu, Y., Qiao, F., Ji, X., Luo, C., Zhang, J., Xu, T., Yu, B., Wang, L., Wang, T., Pan, Q., Ma, D., Hu, P., & Xu, Z. (2018). Prenatal chromosomal microarray analysis in fetuses with congenital heart disease: A prospective cohort study. American Journal of Obstetrics and Gynecology, 218(2):244.e1-244.e17.
Zaidi, S., Choi, M., Wakimoto, H., Ma, L., Jiang, J., Overton, J. D., Romano-Adesman, A., Bjornson, R. D., Breitbart, R. E., Brown, K. K., Carriero, N. J., Cheung, Y. H., Deanfield, J., DePalma, S., Fakhro, K. A., Glessner, J., Hakonarson, H., Italia, M. J., Kaltman, J. R., … Lifton, R. P. (2013). De novo mutations in histone-modifying genes in congenital heart disease. Nature, 498, 220-223.
Zariwala, M. A., Leigh, M. W., Ceppa, F., Kennedy, M. P., Noone, P. G., Carson, J. L., Hazucha, M. J., Lori, A., Horvath, J., Olbrich, H., Loges, N. T., Bridoux, A.-M., Pennarun, G., Duriez, B., Escudier, E., Mitchison, H. M., Chodhari, R., Chung, E. M. K., Morgan, L. C., … Knowles, M. R. (2006). Mutations of DNAI1 in primary ciliary dyskinesia: Evidence of founder effect in a common mutation. American Journal of Respiratory and Critical Care Medicine, 174, 858-866.