High diagnosis rate for nonimmune hydrops fetalis with prenatal clinical exome from the Hydrops-Yielding Diagnostic Results of Prenatal Sequencing (HYDROPS) Study.


Journal

Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831

Informations de publication

Date de publication:
07 2021
Historique:
received: 22 09 2020
accepted: 05 02 2021
revised: 03 02 2021
pubmed: 10 3 2021
medline: 13 8 2021
entrez: 9 3 2021
Statut: ppublish

Résumé

Nonimmune hydrops fetalis (NIHF) presents as life-threatening fluid collections in multiple fetal compartments and can be caused by both genetic and non-genetic etiologies. We explored incremental diagnostic yield of testing with prenatal exome sequencing (ES) for NIHF following a negative standard NIHF workup. Participants enrolled into the Hydrops-Yielding Diagnostic Results of Prenatal Sequencing (HYDROPS) study met a strict definition of NIHF and had negative standard-of-care workup. Clinical trio ES from fetal samples and parental blood was performed at a CLIA-certified reference laboratory with clinical reports returned by geneticists and genetic counselors. Negative exomes were reanalyzed with information from subsequent ultrasounds and records. Twenty-two fetal exomes reported 11 (50%) diagnostic results and five possible diagnoses (22.7%). Diagnosed cases comprised seven de novodominant disorders, three recessive disorders, and one inherited dominant disorder including four Noonan syndromes (PTPN11, RAF1, RIT1, and RRAS2), three musculoskeletal disorders (RYR1, AMER1, and BICD2), two metabolic disorders (sialidosis and multiple sulfatase deficiency), one Kabuki syndrome, and one congenital anemia (KLF1). The etiology of NIHF predicts postnatal prognosis and recurrence risk in future pregnancies. ES provides high incremental diagnostic yield for NIHF after standard-of-care testing and should be considered in the workup.

Identifiants

pubmed: 33686258
doi: 10.1038/s41436-021-01121-0
pii: S1098-3600(21)05029-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1325-1333

Références

Whybra, C., Källén, K., Hansson, S. R. & Gunnarsson, R. Non-immune hydrops fetalis was rare in Sweden during 1997-2015, but cases were associated with complications and poor prognosis. Acta Paediatr. 109, 2570–2577 (2020).
Al-Kouatly, H. B. et al. Lysosomal storage disease spectrum in nonimmune hydrops fetalis: a retrospective case control study. Prenat. Diagn. 40, 738–745 (2020).
doi: 10.1002/pd.5678
Makhamreh, M. M., Cottingham, N., Ferreira, C. R., Berger, S. & Al-Kouatly, H. B. Nonimmune hydrops fetalis and congenital disorders of glycosylation: a systematic literature review. J. Inherit. Metab. Dis. 43, 223–233 (2020).
doi: 10.1002/jimd.12162
Bellini, C. et al. Etiology of non-immune hydrops fetalis: an update. Am. J. Med. Genet. A. 167A, 1082–1088 (2015).
doi: 10.1002/ajmg.a.36988
Sparks, T. N. et al. Nonimmune hydrops fetalis: identifying the underlying genetic etiology. Genet. Med. 21, 1339–1344 (2019).
doi: 10.1038/s41436-018-0352-6
Mardy, A. H., Chetty, S. P., Norton, M. E. & Sparks, T. N. A system-based approach to the genetic etiologies of non-immune hydrops fetalis. Prenat. Diagn. 39, 732–750 (2019).
doi: 10.1002/pd.5479
Norton, M. E., Chauhan, S. P., Dashe, J. S. & (SMFM), Sf. M.-F. M. Society for maternal-fetal medicine (SMFM) clinical guideline #7: nonimmune hydrops fetalis. Am. J. Obstet. Gynecol. 212, 127–139 (2015).
Carrasco Salas, P. et al. Noonan syndrome: severe phenotype and PTPN11 mutations. Med. Clin. (Barc.) 152, 62–64 (2019).
doi: 10.1016/j.medcli.2018.03.015
Quinn, A. M., Valcarcel, B. N., Makhamreh, M. M., Al-Kouatly, H. B., and Berger, S. I. A systematic review of monogenic etiologies of nonimmune hydrops fetalis. Genet. Med. 23, 3–12 (2021).
Srivastava, S. et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet. Med. 21, 2413–2421 (2019).
doi: 10.1038/s41436-019-0554-6
Shamseldin, H. E. et al. Molecular autopsy in maternal-fetal medicine. Genet. Med. 20, 420–427 (2018).
doi: 10.1038/gim.2017.111
Yates, C. L. et al. Whole-exome sequencing on deceased fetuses with ultrasound anomalies: expanding our knowledge of genetic disease during fetal development. Genet. Med. 19, 1171–1178 (2017).
doi: 10.1038/gim.2017.31
Becher, N. et al. Implementation of exome sequencing in fetal diagnostics-Data and experiences from a tertiary center in Denmark. Acta Obstet. Gynecol. Scand. 99, 783–790 (2020).
doi: 10.1111/aogs.13871
Shamseldin, H. E. et al. Identification of embryonic lethal genes in humans by autozygosity mapping and exome sequencing in consanguineous families. Genome Biol. 16, 116 (2015).
doi: 10.1186/s13059-015-0681-6
Petrovski, S. et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Lancet. 393, 758–767 (2019).
doi: 10.1016/S0140-6736(18)32042-7
Lord, J. et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet. 393, 747–757 (2019).
doi: 10.1016/S0140-6736(18)31940-8
Vora, N. L. et al. An approach to integrating exome sequencing for fetal structural anomalies into clinical practice. Genet. Med. 22, 954–961 (2020).
doi: 10.1038/s41436-020-0750-4
Sparks, T. N. et al. Exome sequencing for prenatal diagnosis in nonimmune hydrops fetalis. N. Engl. J. Med. 383, 1746–1756 (2020).
doi: 10.1056/NEJMoa2023643
Koch, L. Exploring human genomic diversity with gnomAD. Nat. Rev. Genet. 21, 448 (2020).
Landrum, M. J. et al. ClinVar: improvements to accessing data. Nucleic Acids Res. 48, D835–D844 (2020).
doi: 10.1093/nar/gkz972
Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).
doi: 10.1038/gim.2015.30
Glogowska, E. et al. Novel mechanisms of PIEZO1 dysfunction in hereditary xerocytosis. Blood. 130, 1845–1856 (2017).
doi: 10.1182/blood-2017-05-786004
Rotordam, M. G. et al. A novel gain-of-function mutation of Piezo1 is functionally affirmed in red blood cells by high-throughput patch clamp. Haematologica. 104, e179–e183 (2019).
doi: 10.3324/haematol.2018.201160
Tomatsu, S., Montaño, A. M., Dung, V. C., Grubb, J. H. & Sly, W. S. Mutations and polymorphisms in GUSB gene in mucopolysaccharidosis VII (Sly syndrome). Hum. Mutat. 30, 511–519 (2009).
doi: 10.1002/humu.20828
Mandich, P. et al. Severe neuropathy after diphtheria-tetanus-pertussis vaccination in a child carrying a novel frame-shift mutation in the small heat-shock protein 27 gene. J. Child. Neurol. 25, 107–109 (2010).
doi: 10.1177/0883073809334387
Troìa, L. et al. The recurrence risk of fetomaternal hemorrhage. Fetal Diagn. Ther. 45, 1–12 (2019).
doi: 10.1159/000491788
Romano, A. A. et al. Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics. 126, 746–759 (2010).
doi: 10.1542/peds.2009-3207

Auteurs

Huda B Al-Kouatly (HB)

Division of Maternal-Fetal Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA. Huda.Al-Kouatly@jefferson.edu.

Mona M Makhamreh (MM)

Division of Maternal-Fetal Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.

Stephanie M Rice (SM)

Division of Maternal-Fetal Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.

Kelsey Smith (K)

Integrated Genetics, Philadelphia, PA, USA.

Christopher Harman (C)

Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.

Andrea Quinn (A)

Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.

Breanna N Valcarcel (BN)

Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.

Brandy Firman (B)

Department of Obstetrics and Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.

Ruby Liu (R)

PerkinElmer, Waltham, MA, USA.

Madhuri Hegde (M)

PerkinElmer, Waltham, MA, USA.

Elizabeth Critchlow (E)

Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.

Seth I Berger (SI)

Center for Genetic Medicine Research/Rare Disease Institute, Children's National Medical Center, Washington, DC, USA. sberger@childrensnational.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH