Single-cell chromatin accessibility identifies pancreatic islet cell type- and state-specific regulatory programs of diabetes risk.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
04 2021
Historique:
received: 24 05 2019
accepted: 18 02 2021
pubmed: 3 4 2021
medline: 21 4 2021
entrez: 2 4 2021
Statut: ppublish

Résumé

Single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq) creates new opportunities to dissect cell type-specific mechanisms of complex diseases. Since pancreatic islets are central to type 2 diabetes (T2D), we profiled 15,298 islet cells by using combinatorial barcoding snATAC-seq and identified 12 clusters, including multiple alpha, beta and delta cell states. We cataloged 228,873 accessible chromatin sites and identified transcription factors underlying lineage- and state-specific regulation. We observed state-specific enrichment of fasting glucose and T2D genome-wide association studies for beta cells and enrichment for other endocrine cell types. At T2D signals localized to islet-accessible chromatin, we prioritized variants with predicted regulatory function and co-accessibility with target genes. A causal T2D variant rs231361 at the KCNQ1 locus had predicted effects on a beta cell enhancer co-accessible with INS and genome editing in embryonic stem cell-derived beta cells affected INS levels. Together our findings demonstrate the power of single-cell epigenomics for interpreting complex disease genetics.

Identifiants

pubmed: 33795864
doi: 10.1038/s41588-021-00823-0
pii: 10.1038/s41588-021-00823-0
pmc: PMC9037575
mid: NIHMS1675458
doi:

Substances chimiques

Blood Glucose 0
Chromatin 0
KCNQ1 Potassium Channel 0
KCNQ1 protein, human 0
Transcription Factors 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

455-466

Subventions

Organisme : NIDDK NIH HHS
ID : U01 DK105541
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK114650
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK120429
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK068471
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK105554
Pays : United States

Références

Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).
pubmed: 22955828 pmcid: 3771521 doi: 10.1126/science.1222794
Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).
pubmed: 25953818 pmcid: 4836442 doi: 10.1126/science.aab1601
Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).
pubmed: 26083756 pmcid: 4685948 doi: 10.1038/nature14590
Preissl, S. et al. Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation. Nat. Neurosci. 21, 432–439 (2018).
pubmed: 29434377 pmcid: 5862073 doi: 10.1038/s41593-018-0079-3
Litzenburger, U. M. et al. Single-cell epigenomic variability reveals functional cancer heterogeneity. Genome Biol. 18, 15 (2017).
pubmed: 28118844 pmcid: 5259890 doi: 10.1186/s13059-016-1133-7
Buenrostro, J. D. et al. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173, 1535–1548.e16 (2018).
pubmed: 29706549 pmcid: 5989727 doi: 10.1016/j.cell.2018.03.074
Ulirsch, J. C. et al. Interrogation of human hematopoiesis at single-cell and single-variant resolution. Nat. Genet. 51, 683–693 (2019).
pubmed: 30858613 pmcid: 6441389 doi: 10.1038/s41588-019-0362-6
Pliner, H. A. et al. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol. Cell 71, 858–871.e8 (2018).
pubmed: 30078726 pmcid: 6582963 doi: 10.1016/j.molcel.2018.06.044
Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).
pubmed: 30297969 pmcid: 6287706 doi: 10.1038/s41588-018-0241-6
Wood, A. R. et al. A genome-wide association study of IVGTT-based measures of first-phase insulin secretion refines the underlying physiology of type 2 diabetes variants. Diabetes 66, 2296–2309 (2017).
pubmed: 28490609 pmcid: 5521867 doi: 10.2337/db16-1452
Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116 (2010).
pubmed: 20081858 pmcid: 3018764 doi: 10.1038/ng.520
Manning, A. K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012).
pubmed: 22581228 pmcid: 3613127 doi: 10.1038/ng.2274
Scott, R. A. et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet. 44, 991–1005 (2012).
pubmed: 22885924 pmcid: 3433394 doi: 10.1038/ng.2385
Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at type 2 diabetes susceptibility loci. eLife 7, e31977 (2018).
pubmed: 29412141 pmcid: 5828664 doi: 10.7554/eLife.31977
Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).
pubmed: 27398621 pmcid: 5034897 doi: 10.1038/nature18642
Gaulton, K. J. et al. A map of open chromatin in human pancreatic islets. Nat. Genet. 42, 255–259 (2010).
pubmed: 20118932 pmcid: 2828505 doi: 10.1038/ng.530
Gaulton, K. J. et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat. Genet. 47, 1415–1425 (2015).
pubmed: 26551672 pmcid: 4666734 doi: 10.1038/ng.3437
Pasquali, L. et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat. Genet. 46, 136–143 (2014).
pubmed: 24413736 pmcid: 3935450 doi: 10.1038/ng.2870
van der Meulen, T. et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21, 769–776 (2015).
pubmed: 26076035 pmcid: 4496282 doi: 10.1038/nm.3872
Caicedo, A. Paracrine and autocrine interactions in the human islet: more than meets the eye. Semin. Cell Dev. Biol. 24, 11–21 (2013).
pubmed: 23022232 doi: 10.1016/j.semcdb.2012.09.007
DiGruccio, M. R. et al. Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets. Mol. Metab. 5, 449–458 (2016).
pubmed: 27408771 pmcid: 4921781 doi: 10.1016/j.molmet.2016.04.007
Dorrell, C. et al. Human islets contain four distinct subtypes of β cells. Nat. Commun. 7, 11756 (2016).
pubmed: 27399229 pmcid: 4942571 doi: 10.1038/ncomms11756
Xin, Y. et al. Pseudotime ordering of single human β-cells reveals states of insulin production and unfolded protein response. Diabetes 67, 1783–1794 (2018).
pubmed: 29950394 doi: 10.2337/db18-0365
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819 pmcid: 6884693 doi: 10.1038/s41592-019-0619-0
Bader, E. et al. Identification of proliferative and mature β-cells in the islets of Langerhans. Nature 535, 430–434 (2016).
pubmed: 27398620 doi: 10.1038/nature18624
Liu, J. S. E. & Hebrok, M. All mixed up: defining roles for β-cell subtypes in mature islets. Genes Dev. 31, 228–240 (2017).
pubmed: 28270515 pmcid: 5358720 doi: 10.1101/gad.294389.116
Greenwald, W. W. et al. Pancreatic islet chromatin accessibility and conformation reveals distal enhancer networks of type 2 diabetes risk. Nat. Commun. 10, 2078 (2019).
pubmed: 31064983 pmcid: 6505525 doi: 10.1038/s41467-019-09975-4
Khetan, S. et al. Type 2 diabetes-associated genetic variants regulate chromatin accessibility in human islets. Diabetes 67, 2466–2477 (2018).
pubmed: 30181159 pmcid: 6198349 doi: 10.2337/db18-0393
Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc. Natl Acad. Sci. USA 114, 2301–2306 (2017).
pubmed: 28193859 pmcid: 5338551 doi: 10.1073/pnas.1621192114
Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360.e4 (2016).
pubmed: 27667365 pmcid: 5228327 doi: 10.1016/j.cels.2016.08.011
Galvagni, F. et al. CD93 and dystroglycan cooperation in human endothelial cell adhesion and migration adhesion and migration. Oncotarget 7, 10090–10103 (2016).
pubmed: 26848865 pmcid: 4891106 doi: 10.18632/oncotarget.7136
Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).
pubmed: 28825706 pmcid: 5623146 doi: 10.1038/nmeth.4401
Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D1284 (2018).
pubmed: 29161433 doi: 10.1093/nar/gkx1188
Wilson, M. E., Scheel, D. & German, M. S. Gene expression cascades in pancreatic development. Mech. Dev. 120, 65–80 (2003).
pubmed: 12490297 doi: 10.1016/S0925-4773(02)00333-7
Conrad, E. et al. The MAFB transcription factor impacts islet α-cell function in rodents and represents a unique signature of primate islet β-cells. Am. J. Physiol. Endocrinol. Metab. 310, E91–E102 (2016).
pubmed: 26554594 doi: 10.1152/ajpendo.00285.2015
Katoh, M. C. MafB is critical for glucagon production and secretion in mouse pancreatic α cells in vivo. Mol. Cell. Biol. 38, e00504-17 (2018).
pubmed: 29378833 pmcid: 5879460 doi: 10.1128/MCB.00504-17
Nishimura, W., Takahashi, S. & Yasuda, K. MafA is critical for maintenance of the mature beta cell phenotype in mice. Diabetologia 58, 566–574 (2015).
pubmed: 25500951 doi: 10.1007/s00125-014-3464-9
Ozato, K., Tailor, P. & Kubota, T. The interferon regulatory factor family in host defense: mechanism of action. J. Biol. Chem. 282, 20065–20069 (2007).
pubmed: 17502370 doi: 10.1074/jbc.R700003200
De Val, S. & Black, B. L. Transcriptional control of endothelial cell development. Dev. Cell 16, 180–195 (2009).
pubmed: 19217421 pmcid: 2728550 doi: 10.1016/j.devcel.2009.01.014
Segerstolpe, Å. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).
pubmed: 27667667 pmcid: 5069352 doi: 10.1016/j.cmet.2016.08.020
Lawlor, N. et al. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res. 27, 208–222 (2017).
pubmed: 27864352 pmcid: 5287227 doi: 10.1101/gr.212720.116
Mawla, A. M. & Huising, M. O. Navigating the depths and avoiding the shallows of pancreatic islet cell transcriptomes. Diabetes 68, 1380–1393 (2019).
pubmed: 31221802 pmcid: 6609986 doi: 10.2337/dbi18-0019
Camunas-Soler, J. et al. Patch-seq links single-cell transcriptomes to human islet dysfunction in diabetes. Cell Metab. 31, 1017–1031.e4 (2020).
pubmed: 32302527 pmcid: 7398125 doi: 10.1016/j.cmet.2020.04.005
Trapnell, C. et al. Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions. Nat. Biotechnol. 32, 381–386 (2014).
pubmed: 24658644 pmcid: 4122333 doi: 10.1038/nbt.2859
Parker, S. C. J. et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc. Natl Acad. Sci. USA 110, 17921–17926 (2013).
pubmed: 24127591 pmcid: 3816444 doi: 10.1073/pnas.1317023110
Aylward, A., Chiou, J., Okino, M.-L., Kadakia, N. & Gaulton, K. J. Shared genetic risk contributes to type 1 and type 2 diabetes etiology. Hum. Mol. Genet. https://doi.org/10.1093/hmg/ddy314 (2018).
Strawbridge, R. J. et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 60, 2624–2634 (2011).
pubmed: 21873549 pmcid: 3178302 doi: 10.2337/db11-0415
Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).
pubmed: 25673413 pmcid: 4382211 doi: 10.1038/nature14177
Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142–148 (2010).
pubmed: 20081857 pmcid: 2922003 doi: 10.1038/ng.521
Wheeler, E. et al. Impact of common genetic determinants of hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysis. PLoS Med. 14, e1002383 (2017).
pubmed: 28898252 pmcid: 5595282 doi: 10.1371/journal.pmed.1002383
Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).
pmcid: 4112379 doi: 10.1038/nature13595
de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).
pubmed: 28067908 pmcid: 5289481 doi: 10.1038/ng.3760
Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).
pubmed: 26502338 pmcid: 4668589 doi: 10.1038/ng.3434
Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).
pubmed: 24162737 pmcid: 3896259 doi: 10.1038/ng.2802
Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).
pubmed: 29700475 pmcid: 5934326 doi: 10.1038/s41588-018-0090-3
Nelson, C. P. et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet. 49, 1385–1391 (2017).
pubmed: 28714975 doi: 10.1038/ng.3913
Nielsen, J. B. et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat. Genet. 50, 1234–1239 (2018).
pubmed: 30061737 pmcid: 6530775 doi: 10.1038/s41588-018-0171-3
Cordell, H. J. et al. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nat. Commun. 6, 8019 (2015).
pubmed: 26394269 doi: 10.1038/ncomms9019
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
pubmed: 26414676 pmcid: 4797329 doi: 10.1038/ng.3406
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630 pmcid: 4495769 doi: 10.1038/ng.3211
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).
pubmed: 26414678 pmcid: 4626285 doi: 10.1038/ng.3404
Scott, R. A. et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66, 2888–2902 (2017).
pubmed: 28566273 pmcid: 5652602 doi: 10.2337/db16-1253
Pickrell, J. K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).
pubmed: 24702953 pmcid: 3980523 doi: 10.1016/j.ajhg.2014.03.004
Lee, D. et al. A method to predict the impact of regulatory variants from DNA sequence. Nat. Genet. 47, 955–961 (2015).
pubmed: 26075791 pmcid: 4520745 doi: 10.1038/ng.3331
McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
pubmed: 27548312 pmcid: 5388176 doi: 10.1038/ng.3643
Wingender, E., Schoeps, T., Haubrock, M. & Dönitz, J. TFClass: a classification of human transcription factors and their rodent orthologs. Nucleic Acids Res. 43, D97–D102 (2015).
pubmed: 25361979 doi: 10.1093/nar/gku1064
Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).
pubmed: 24614317 doi: 10.1038/nrg3682
Schmitt, A. D., Hu, M. & Ren, B. Genome-wide mapping and analysis of chromosome architecture. Nat. Rev. Mol. Cell Biol. 17, 743–755 (2016).
pubmed: 27580841 pmcid: 5763923 doi: 10.1038/nrm.2016.104
Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).
pubmed: 22955617 pmcid: 3721348 doi: 10.1038/nature11232
Miguel-Escalada, I. et al. Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nat. Genet. 51, 1137–1148 (2019).
pubmed: 31253982 pmcid: 6640048 doi: 10.1038/s41588-019-0457-0
Jian, X. & Felsenfeld, G. Insulin promoter in human pancreatic β cells contacts diabetes susceptibility loci and regulates genes affecting insulin metabolism. Proc. Natl Acad. Sci. USA 115, E4633–E4641 (2018).
pubmed: 29712868 pmcid: 5960328 doi: 10.1073/pnas.1803146115
Lawlor, N. et al. Multiomic profiling identifies cis-regulatory networks underlying human pancreatic β cell identity and function. Cell Rep. 26, 788–801.e6 (2019).
pubmed: 30650367 pmcid: 6389269 doi: 10.1016/j.celrep.2018.12.083
Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).
pubmed: 25211370 doi: 10.1038/nbt.3033
Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).
pubmed: 26287746 pmcid: 4959911 doi: 10.1056/NEJMoa1502214
Fogarty, M. P., Cannon, M. E., Vadlamudi, S., Gaulton, K. J. & Mohlke, K. L. Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus. PLoS Genet. 10, e1004633 (2014).
pubmed: 25211022 pmcid: 4161327 doi: 10.1371/journal.pgen.1004633
Rusu, V. et al. Type 2 diabetes variants disrupt function of SLC16A11 through two distinct mechanisms. Cell 170, 199–212.e20 (2017).
pubmed: 28666119 pmcid: 5562285 doi: 10.1016/j.cell.2017.06.011
Carrat, G. R. et al. Decreased STARD10 expression is associated with defective insulin secretion in humans and mice. Am. J. Hum. Genet. 100, 238–256 (2017).
pubmed: 28132686 pmcid: 5294761 doi: 10.1016/j.ajhg.2017.01.011
Claussnitzer, M. et al. Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms. Cell 156, 343–358 (2014).
pubmed: 24439387 pmcid: 7116609 doi: 10.1016/j.cell.2013.10.058
Roman, T. S. et al. A type 2 diabetes-associated functional regulatory variant in a pancreatic islet enhancer at the ADCY5 locus. Diabetes 66, 2521–2530 (2017).
pubmed: 28684635 pmcid: 5860374 doi: 10.2337/db17-0464
Kycia, I. et al. A common type 2 diabetes risk variant potentiates activity of an evolutionarily conserved islet stretch enhancer and increases C2CD4A and C2CD4B expression. Am. J. Hum. Genet. 102, 620–635 (2018).
pubmed: 29625024 pmcid: 5985342 doi: 10.1016/j.ajhg.2018.02.020
Avrahami, D., Klochendler, A., Dor, Y. & Glaser, B. Beta cell heterogeneity: an evolving concept. Diabetologia 60, 1363–1369 (2017).
pubmed: 28597073 pmcid: 5554543 doi: 10.1007/s00125-017-4326-z
Modi, H. et al. Ins2 gene bursting activity defines a mature β-cell state. Preprint at bioRxiv https://doi.org/10.1101/702589 (2019).
Farack, L. et al. Transcriptional heterogeneity of beta cells in the intact pancreas. Dev. Cell 48, 115–125.e4 (2019).
pubmed: 30503750 doi: 10.1016/j.devcel.2018.11.001
Rai, V. et al. Single-cell ATAC-seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures. Mol. Metab. 32, 109–121 (2020).
pubmed: 32029221 doi: 10.1016/j.molmet.2019.12.006
Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
pubmed: 29409532 pmcid: 5802054 doi: 10.1186/s13059-017-1382-0
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
pubmed: 30914743 pmcid: 6435756 doi: 10.1038/s41598-019-41695-z
Arda, H. E. et al. A chromatin basis for cell lineage and disease risk in the human pancreas. Cell Syst. 7, 310–322.e4 (2018).
pubmed: 30145115 doi: 10.1016/j.cels.2018.07.007
Ackermann, A. M., Wang, Z., Schug, J., Naji, A. & Kaestner, K. H. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol. Metab. 5, 233–244 (2016).
pubmed: 26977395 pmcid: 4770267 doi: 10.1016/j.molmet.2016.01.002
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).
pubmed: 27141961 pmcid: 4987924 doi: 10.1093/nar/gkw377
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Li, Y. I. et al. RNA splicing is a primary link between genetic variation and disease. Science 352, 600–604 (2016).
pubmed: 27126046 pmcid: 5182069 doi: 10.1126/science.aad9417
Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).
pubmed: 19458158 pmcid: 2703892 doi: 10.1093/nar/gkp335
van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nat. Methods 12, 1061–1063 (2015).
pubmed: 26366987 pmcid: 4626402 doi: 10.1038/nmeth.3582
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
pubmed: 27467249 pmcid: 5846465 doi: 10.1016/j.cels.2016.07.002
Kerpedjiev, P. et al. HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 19, 125 (2018).
pubmed: 30143029 pmcid: 6109259 doi: 10.1186/s13059-018-1486-1
Raviram, R. et al. 4C-ker: a method to reproducibly identify genome-wide interactions captured by 4C-seq experiments. PLoS Comput. Biol. 12, e1004780 (2016).
pubmed: 26938081 pmcid: 4777514 doi: 10.1371/journal.pcbi.1004780
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Velazco-Cruz, L. et al. Acquisition of dynamic function in human stem cell-derived β cells. Stem Cell Rep. 12, 351–365 (2019).
doi: 10.1016/j.stemcr.2018.12.012

Auteurs

Joshua Chiou (J)

Biomedical Graduate Studies Program, University of California, San Diego, La Jolla, CA, USA.

Chun Zeng (C)

Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA.
Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.

Zhang Cheng (Z)

Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA.

Jee Yun Han (JY)

Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA.

Michael Schlichting (M)

Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA.
Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.

Michael Miller (M)

Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA.

Robert Mendez (R)

Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA.

Serina Huang (S)

Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA.

Jinzhao Wang (J)

Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA.
Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.

Yinghui Sui (Y)

Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA.
Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.

Allison Deogaygay (A)

Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA.

Mei-Lin Okino (ML)

Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA.

Yunjiang Qiu (Y)

Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.

Ying Sun (Y)

Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA.

Parul Kudtarkar (P)

Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA.

Rongxin Fang (R)

Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.

Sebastian Preissl (S)

Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA.

Maike Sander (M)

Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA. masander@ucsd.edu.
Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA. masander@ucsd.edu.
Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA. masander@ucsd.edu.

David U Gorkin (DU)

Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA. david.gorkin@emory.edu.
Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA. david.gorkin@emory.edu.
Department of Biology, Emory University, Atlanta, GA, USA. david.gorkin@emory.edu.

Kyle J Gaulton (KJ)

Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA. kgaulton@ucsd.edu.
Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA. kgaulton@ucsd.edu.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH