Evolutionary history of the mediterranean Pinus halepensis-brutia species complex using gene-resequencing and transcriptomic approaches.
Candidate genes
Demographic history
Long-range colonization
Phylogenetic approaches
Transcriptome
Journal
Plant molecular biology
ISSN: 1573-5028
Titre abrégé: Plant Mol Biol
Pays: Netherlands
ID NLM: 9106343
Informations de publication
Date de publication:
Jul 2021
Jul 2021
Historique:
received:
14
12
2020
accepted:
22
04
2021
pubmed:
3
5
2021
medline:
22
7
2021
entrez:
2
5
2021
Statut:
ppublish
Résumé
Complementary gene-resequencing and transcriptomic approaches reveal contrasted evolutionary histories in a species complex. Pinus halepensis and Pinus brutia are closely related species that can intercross, but occupy different geographical ranges and bioclimates. To study the evolution of this species complex and to provide genomic resources for further research, we produce and analyze two new complementary sets of genetic resources: (i) a set of 172 re-sequenced genomic target loci analyzed in 45 individuals, and (ii) a set of 11 transcriptome assemblies. These two datasets provide insights congruent with previous studies: P. brutia displays high level of genetic diversity and no genetic sub-structure, while P. halepensis shows three main genetic clusters, the western Mediterranean and North African clusters displaying much lower genetic diversity than the eastern Mediterranean cluster, the latter cluster having similar genetic diversity to P. brutia. In addition, these datasets provide new insights on the timing of the species-complex history: the two species would have split at the end of the tertiary, and the changing climatic conditions of the Mediterranean region at the end of the Tertiary-beginning of the Quaternary, together with the distinct species tolerance to harsh climatic conditions would have resulted in different geographic distributions, demographic histories and genetic patterns of the two pines. The multiple glacial-interglacial cycles during the Quaternary would have led to the expansion of P. brutia in the Middle East, while P. halepensis would have been through bottlenecks. The last glaciations, from 0.6 Mya on, would have affected further the Western genetic pool of P. halepensis.
Identifiants
pubmed: 33934278
doi: 10.1007/s11103-021-01155-7
pii: 10.1007/s11103-021-01155-7
doi:
Substances chimiques
DNA, Plant
0
Genetic Markers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
367-380Subventions
Organisme : Agencia Estatal de Investigación
ID : CGL2011-30182-C02-01/02
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Miles A, Ralph P, Rae S, Pisupati R (2019) cggh/scikit-allel: v1.2.1. https://doi.org/10.5281/zenodo.3238280 .
Agúndez D, Degen B, von Wuehlisch G, Alía R (1999) Multilocus analysis of Pinus halepensis Mill. from Spain: genetic diversity and clinal variation. Silvae Genet 48:173–178
Birol I, Raymon A, Jackman SD et al (2013) Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29:1492–1497. https://doi.org/10.1093/bioinformatics/btt178
doi: 10.1093/bioinformatics/btt178
pubmed: 23698863
pmcid: 3673215
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
doi: 10.1093/bioinformatics/btu170
pubmed: 24695404
pmcid: 24695404
Bucci G, Anzidei M, Madaghiele A, Vendramin GG (2002) Detection of haplotypic variation and natural hybridization in halepensis-complex pine species using chloroplast simple sequence repeat (SSR) markers. Mol Ecol 7:1633–1643. https://doi.org/10.1046/j.1365-294x.1998.00466.x
doi: 10.1046/j.1365-294x.1998.00466.x
Chambel MR, Climent J, Pichot C, Ducci F (2013) Mediterranean Pines (Pinus halepensis Mill. and brutia Ten.). In: Pâques LE (ed) Forest Tree Breeding in Europe: Current State.of-the-Art and Perspectives. Managing Forest Ecosystems, vol 25. Springer, Dordrecht, pp 229–265. https://doi.org/10.1007/978-94-007-6146-9_5 .
Celinski K, Kijak H, Wojnicka-Półtorak A, Buczkowska-Chmielewska K, Sokołowska J, Chudzińska, (2017) Effectiveness of the DNA barcoding approach for closely related conifers discrimination: a case study of the Pinus mugo complex. C R Biol 340:339–348. https://doi.org/10.1016/j.crvi.2017.06.002
doi: 10.1016/j.crvi.2017.06.002
pubmed: 28711357
Conkle MT, Schiller G, Grunwald C (1988) Electrophoretic analysis of diversity and phylogeny of Pinus brutia and closely related taxa. Syst Bot 13(3):411–424. https://doi.org/10.2307/2419301
doi: 10.2307/2419301
Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Meth 9:772. https://doi.org/10.1038/nmeth.2109
doi: 10.1038/nmeth.2109
Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology 1:460–483. https://doi.org/10.3390/biology1030460
doi: 10.3390/biology1030460
pubmed: 24832503
pmcid: 4009820
DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, Philippakis A, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell T, Kernytsky A, Sivachenko A, Cibulskis K, Gabriel S, Altshuler D, Daly M (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Gen 43:491–498. https://doi.org/10.1038/ng.806
doi: 10.1038/ng.806
Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7
doi: 10.1007/s12686-011-9548-7
Eckert AJ, Bower AD, González-Martínez SC, Wegrzyn JL, Coop G, Neale DB (2010) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19:3789–3805. https://doi.org/10.1111/j.1365-294X.2010.04698.x
doi: 10.1111/j.1365-294X.2010.04698.x
pubmed: 20723060
Eckert AJ, Bower AD, Jermstad KD, Wegrzyn JL, Knaus BJ, Syring JV, Neale DB (2013) Multilocus analyses reveal little evidence for lineage-wide adaptive evolution within major clades of soft pines (Pinus subgenus Strobus). Mol Ecol 22:5635–5650. https://doi.org/10.1111/mec.12514
doi: 10.1111/mec.12514
pubmed: 24134614
Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16:157 https://doi.org/10.1186/s13059-015-0721-2
doi: 10.1186/s13059-015-0721-2
pubmed: 26243257
pmcid: 26243257
Engström PG, Steijger T, Sipos B, Grant GR, Kahles A, Rätsch G, Goldman N, Hubbard TJ, Harrow J, Guigó R, Bertone P (2013) Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Meth 10:1185–1181. https://doi.org/10.1038/nmeth.2722
doi: 10.1038/nmeth.2722
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
doi: 10.1111/j.1365-294X.2005.02553.x
pubmed: 15969739
pmcid: 15969739
Falush D, Stephens M, Pritchard J (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:156–187. https://doi.org/10.1093/genetics/164.4.1567
doi: 10.1093/genetics/164.4.1567
Fernández-Pozo N, Canales J, Guerrero-Fernández D, Villalobos DP, Díaz-Moreno SM, Bautista R, Flores-Monterroso A, Guevara MA, Perdiguero P, Collada C, Cervera MT, Soto A, Ordás R, Cantón FR, Avila C, Cánovas FM, Claros MG (2011) EuroPineDB: a high coverage web database for maritime pine transcriptome. BMC Genomics 12:366. https://doi.org/10.1186/1471-2164-12-366
doi: 10.1186/1471-2164-12-366
pubmed: 21762488
pmcid: 3152544
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285. https://doi.org/10.1093/nar/gkv1344
doi: 10.1093/nar/gkv1344
pubmed: 26673716
Fox H, Doron-Faigenboim A, Kelly G, Bourstein R, Attia Z, Zhou J, Moshe Y, Moshelion M, David-Schwartz R (2018) Transcriptome analysis of Pinus halepensis under drought stress and during recovery. Tree Physiol 38:423–441. https://doi.org/10.1093/treephys/tpx137
doi: 10.1093/treephys/tpx137
pubmed: 29177514
Frankis M (1999) Pinus brutia (Pinaceae). Curtis’s Bot Magazine 16:173–184
doi: 10.1111/1467-8748.00216
Gernandt DS, Geada López G, Ortiz García S, Liston, (2005) Phylogeny and classification of Pinus. Taxon 54:29–42. https://doi.org/10.2307/25065300
doi: 10.2307/25065300
Getachew SE, Bille NH, Bell JM, Gebreselassie W (2019) Genotyping by sequencing for plant breeding-a review. Adv Biotechnol Microbiol. https://doi.org/10.19080/AIBM.2019.14.555891
Gómez A, Alía R, Bueno MA (2001) Genetic diversity of Pinus halepensis Mill. populations detected by RAPD loci. Ann For Sci 58:869–875
doi: 10.1051/forest:2001170
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883
doi: 10.1038/nbt.1883
pubmed: 21572440
pmcid: 3571712
Grivet D, Sebastiani F, González-Martínez SC, Vendramin GG (2009) Patterns of polymorphism resulting from long-range colonization in the Mediterranean conifer Aleppo pine. New Phytol 184:1016–1028. https://doi.org/10.1111/j.1469-8137.2009.03015.x
doi: 10.1111/j.1469-8137.2009.03015.x
pubmed: 19732348
Grivet D, Sebastiani F, Alía R, Bataillon T, Torre S, Zabal-Aguirre M, Vendramin GG, González-Martínez SC (2011) Molecular footprints of local adaptation in two Mediterranean conifers. Mol Biol Evol 28:101–106. https://doi.org/10.1093/molbev/msq190
doi: 10.1093/molbev/msq190
pubmed: 20656795
Grivet D, Avia K, Vaattovaara A, Eckert AJ, Neale DB, Savolainen O, González-Martínez SC (2017) High rate of adaptive evolution in two widespread European pines. Mol Ecol 26:6857–6870. https://doi.org/10.1111/mec.14402
doi: 10.1111/mec.14402
pubmed: 29110402
Hey J, Chung Y, Sethuraman A, Lachance J, Tishkoff S, Sousa VC, Wang Y (2018) Phylogeny estimation by integration over isolation with migration models. Mol Biol Evol 35:2805–2818. https://doi.org/10.1093/molbev/msy162
doi: 10.1093/molbev/msy162
pubmed: 30137463
pmcid: 6231491
Houminer N, Doron-Faigenboim A, Shklar G, De La Torre AR, Neale D, Korol L, Ashkenazi M, Moshe Y, Riov J, Osem Y, David-Swartz R (2021) Transcriptome-based single-nucleotide polymorphism markers between Pinus brutia and Pinus halepensis and the analysis of their hybrids. Tree Genet Genome 17:14. https://doi.org/10.1007/s11295-021-01496-w
doi: 10.1007/s11295-021-01496-w
Jakobsson M, Rosenberg NA (2007) CLUMPP: a software matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. https://doi.org/10.1093/bioinformatics/btm233
doi: 10.1093/bioinformatics/btm233
pubmed: 17485429
Jaramillo-Correa JP, Grivet D, Terrab A, Kurt Y, de Lucas AI, Wahid N, Vendramin GG, González-Martínez SC (2010) The Strait of Gibraltar as a major biogeographic barrier in Mediterranean conifers: a comparative phylogeographic survey. Mol Ecol 19:5452–5468. https://doi.org/10.1111/j.1365-294X.2010.04912.x
doi: 10.1111/j.1365-294X.2010.04912.x
pubmed: 21073588
Jaramillo-Correa JP, Bagnoli F, Grivet D, Fady B, Aravanopoulos FA, Vendramin GG, González-Martínez SG (2020) Evolutionary rate and genetic load in an emblematic Mediterranean tree following an ancient and prolonged population collapse. Mol Ecol 29:4797–4811. https://doi.org/10.1111/mec.15684
doi: 10.1111/mec.15684
pubmed: 33063352
Jukes TH, Cantor CR (1969) Evolution of protein molecules. Academic Press, New York, pp 21–132
Korol L, Madmony A, Riov Y, Schiller G (1995) Pinus halepensis x Pinus brutia subsp. brutia hybrids? Identification using morphological and biochemical traits. Silvae Genet 44:186–190
Kremer A, Hipp AL (2020) Oaks: an evolutionary success story. New Phytol 226:987–1011. https://doi.org/10.1111/nph.16274 .
Kurt Y, González-Martínez SC, Alía R, Isik K (2012) Genetic differentiation in Pinus brutia Ten. using molecular markers and quantitative traits: the role of altitude. Ann Forest Sci 69:345–351. https://doi.org/10.1007/s13595-011-0169-9
doi: 10.1007/s13595-011-0169-9
Liu X, Fu Y-X (2015) Exploring population size changes using SNP frequency spectra. Nat Genet 47:555–559. https://doi.org/10.1038/ng.3254
doi: 10.1038/ng.3254
pubmed: 25848749
pmcid: 4414822
Madmony A, Schiller G, Moshe Y, Tsabary G, Mendel Z, Riov J (2003) Controlled and open pollination between Pinus brutia (Ten.) and Pinus halepensis (Mill.) in Israel and hybrid performance. Israel J Plant Sci 51:213–222. https://doi.org/10.1560/FNFR-JCUH-3EEA-0UGJ
doi: 10.1560/FNFR-JCUH-3EEA-0UGJ
Mannion AM (2008) The tertiary–quaternary environmental history of the mediterranean basin: the background to Mediterranean Island environments. In: Vogiatzakis I, Pungetti G, Mannion AM (eds) Mediterranean Island landscapes. Landscape Series, vol 9. Springer, Dordrecht, pp 15–35. https://doi.org/10.1007/978-1-4020-5064-0_2
Mauri A, Di Leo M, de Rigo D, Caudullo G (2016) Pinus halepensis and Pinus brutia in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European Atlas of forest tree species. Publ Off EU, Luxembourg, pp e0166b8+.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110
doi: 10.1101/gr.107524.110
pubmed: 2928508
pmcid: 2928508
Morgante M, Felice N, Vendramin GG (1998) Analysis of hypervariable chloroplast microsatellites in Pinus halepensis reveals a dramatic genetic bottleneck. In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity. Springer, Dordrecht, pp 407–412. https://doi.org/10.1007/978-94-009-0019-6_73 .
Mosca E, Cruz F, Gómez-Garrido J et al (2019) A reference genome sequence for the European silver fir (Abies alba Mill.): a community-generated genomic resource. G3-Genes Genom Genet 9:2039–2049. https://doi.org/10.1534/g3.119.400083 .
Nahal I (1962) Le pin d’Alep (Pinus halepensis Mill.). Etude taxonomique, phytogéographique, écologique et sylvicole. Annales de l’Ecole Nationale Des Eaux et Forêts et de la Station de Recherches et Expériences Forestières 4:7–207
Neale D, Wegrzyn J, Stevens K et al (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59. https://doi.org/10.1186/gb-2014-15-3-r59
doi: 10.1186/gb-2014-15-3-r59
pubmed: 24647006
pmcid: 4053751
Neale D, McGuire P, Wheeler N et al (2017) The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. G3-Genes Genom Genet 7:3157–3167. https://doi.org/10.1534/g3.117.300078
doi: 10.1534/g3.117.300078
Ne'eman G, Trabaud (2000) Ecology, biogeography and management of Pinus halepensis and P. brutia forest ecosystems in the Mediterranean basin. Backhuys Publishers, Leiden.
Nystedt B, Street NR, Wetterbom A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584. https://doi.org/10.1038/nature12211
doi: 10.1038/nature12211
pubmed: 23698360
Ojeda DI, Mattila TM, Ruttink T, Kujala ST, Kärkkäinen K, Verta J-P, Pyhäjärvi T (2018) Utilization of tissue ploidy level variation in de novo transcriptome assembly of Pinus sylvestris. G3 9:3409–3421. https://doi.org/10.1534/g3.119.400357
doi: 10.1534/g3.119.400357
Olsson S, Grivet D, Cattonaro F, Vendramin V, Giovannelli G, Scotti-Saintagne C, Vendramin GG, Fady B (2020) Evolutionary relevance of lineages in the European black pine (Pinus nigra) in the transcriptomic era. Tree Genet Genomes. https://doi.org/10.1007/s11295-020-1424-8
doi: 10.1007/s11295-020-1424-8
Panetsos KP, Moulalis D, Mitsopoulos D (1983) Artificial hybrids between Pinus brutia and P. halepensis in Greece. Growth-Adaptation. Lab. of Forest Gen. and For. Pl. Breeding. University of Thessaloniki.
Parks M, Cronn R, Liston A (2009) Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol 7:84. https://doi.org/10.1186/1741-7007-7-84
doi: 10.1186/1741-7007-7-84
pubmed: 19954512
pmcid: 2793254
Perry A, Wachowiak W, Downing A, Talbot R, Cavers S (2020) Development of a single nucleotide polymorphism array for population genomic studies in four European pine species. Mol Ecol Resour 20:1697–1705. https://doi.org/10.1111/1755-0998.13223
doi: 10.1111/1755-0998.13223
pubmed: 32633888
Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Ann Rev Ecol Evol Syst 37:187–214. https://doi.org/10.1146/annurev.ecolsys.37.091305.110215
doi: 10.1146/annurev.ecolsys.37.091305.110215
Pinheiro F, deGouveia TMZM, Cozzolino S, Cafasso D, Cardoso-Gustavson P, Suzuki RM, Palma-Silva C (2016) Strong but permeable barriers to gene exchange between sister species of Epidendrum. Am J Bot 103:1472–1482. https://doi.org/10.3732/ajb.1600064
doi: 10.3732/ajb.1600064
pubmed: 27519428
Pinosio S, González-Martínez BF, Cattonaro F, Grivet D, Marroni F, Lorenzo Z, Pausas JG, Verdú M, Vendramin GG (2014) First insights into the transcriptome and development of new genomic tools of a widespread circum-Mediterranean tree species, Pinus halepensis Mill. Mol Ecol Resour 14:846–856. https://doi.org/10.1111/1755-0998.12232
doi: 10.1111/1755-0998.12232
pubmed: 24450970
Price MN, Dehal PS, Arkin AP (2010) FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490. https://doi.org/10.1371/journal.pone.0009490
doi: 10.1371/journal.pone.0009490
pubmed: 20224823
pmcid: 2835736
Pritchard JK, Wen W (2003) Documentation for STRUCTURE Software: version2. Chicago: University of Chicago press. Retrieved from: http:/web.stanford.edu/group/pritchardlab/software/structure2_1.html.
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
doi: 10.1093/genetics/155.2.945
Rabiee M, Sayyari E, Mirarab S (2019) Multi-Allele species reconstruction using ASTRAL. Mol Phyl Evol 130:286–296. https://doi.org/10.1016/j.ympev.2018.10.033
doi: 10.1016/j.ympev.2018.10.033
Ranwez V, Harispe S, Delsuc F, Douzery EJP (2011) MACSE: multiple alignment of coding sequences accounting for frameshifts and stop codons. PLoS ONE 6:e22594. https://doi.org/10.1371/journal.pone.0022594
doi: 10.1371/journal.pone.0022594
pubmed: 21949676
pmcid: 3174933
Ramos-Onsins SE, Windsor A, Mitchell-Olds T (2008) MANVa software: multilocus analysis of nucleotide variation. http://www.ub.edu/softevol/manva .
Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029
doi: 10.1093/sysbio/sys029
pubmed: 22357727
pmcid: 3329765
Ruiz Daniels R, Taylor RS, Serra-Varela MJ, Vendramin GG, González-Martínez SC, Grivet D (2018) Inferring selection in instances of long-range colonization: the Aleppo pine (Pinus halepensis) in the Mediterranean Basin. Mol Ecol 27:3331–3345. https://doi.org/10.1111/mec.14786
doi: 10.1111/mec.14786
Saladin B, Leslie AB, Wüest RO, Litsios G, Conti E, Salamin N, Zimmermann NE (2017) Fossils matter: improved estimates of divergence times in Pinus reveal older diversification. BMC Evol Biol 17:95. https://doi.org/10.1186/s12862-017-0941-z
doi: 10.1186/s12862-017-0941-z
pubmed: 28376717
pmcid: 5381128
Scotti-Saintagne C, Giovannelli G, Scotti I, Roig A, Spanu I, Vendramin GG, Guibal F, Fady B (2019) Recent, Late Pleistocene fragmentation shaped the phylogeographic structure of the European black pine (Pinus nigra Arnold). Tree Genet Genomes 15:76. https://doi.org/10.1007/s11295-019-1381-2
doi: 10.1007/s11295-019-1381-2
Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2890. https://doi.org/10.1093/bioinformatics/btl446
doi: 10.1093/bioinformatics/btl446
pubmed: 16928733
Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57:758–771. https://doi.org/10.1080/10635150802429642
doi: 10.1080/10635150802429642
pubmed: 18853362
pmcid: 18853362
Stevens KA, Wegrzyn JL, Zimin A et al (2016) Sequence of the sugar pine megagenome. Genetics 204:1613–1626. https://doi.org/10.1534/genetics.116.193227
doi: 10.1534/genetics.116.193227
pubmed: 5161289
pmcid: 5161289
Stöver BC, Müller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11:7. https://doi.org/10.1186/1471-2105-11-7
doi: 10.1186/1471-2105-11-7
pubmed: 20051126
pmcid: 2806359
Tajima F (1989) Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595
doi: 10.1093/genetics/123.3.585
Van Andel TH (2002) The climate and landscape of middle part of Weichselian glaciations in Europe: the stage 3 project. Q Res 57:2–8. https://doi.org/10.1006/qres.2001.2294
doi: 10.1006/qres.2001.2294
Van der Auwera GA, Carneiro M, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella K, Altshuler D, Gabriel S, DePristo M (2013) From FastQ data to high-confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1-11.10.33. https://doi.org/10.1002/0471250953.bi1110s43
doi: 10.1002/0471250953.bi1110s43
Wachowiak W, Trivedi U, Perry A, Cavers S (2015) Comparative transcriptomics of a complex of four European pine species. BMC Genomics 16:234. https://doi.org/10.1186/s12864-015-1401-z
doi: 10.1186/s12864-015-1401-z
pubmed: 25887584
pmcid: 4458023
Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276. https://doi.org/10.1016/0040-5809(75)90020-9
doi: 10.1016/0040-5809(75)90020-9
pubmed: 1145509
Wegrzyn, JL, Lee JM, Tearse BR, Neale, DB (2008) TreeGenes: A forest tree genome database. Int J Plant Genomics 412875.
Zhang C, Rabiee M, Sayyari E, Mirarab S (2018) ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform 19:153. https://doi.org/10.1186/s12859-018-2129-y
doi: 10.1186/s12859-018-2129-y
Zimin AV, Stevens KA, Crepeau MW, Puiu D, Wegrzyn JL, Yorke JA, Langley CH, Neale DB, Salzberg SL (2017) An improved assembly of the loblolly pine megagenome using long-read single-molecule sequencing. Giga-Science 6:1–4. https://doi.org/10.1093/gigascience/giw016
doi: 10.1093/gigascience/giw016
pubmed: 29069494
pmcid: 5691383