Genome-based selection and application of food-grade microbes for chickpea milk fermentation towards increased L-lysine content, elimination of indigestible sugars, and improved flavour.

13C isotope study Bacillus amyloliquefaciens Chickpea Flavour Indigestible sugar L-lysine Lactic acid bacteria Lacticaseibacillus paracasei Plant milk Plant-based milk alternative Raffinose Stachyose fermentation

Journal

Microbial cell factories
ISSN: 1475-2859
Titre abrégé: Microb Cell Fact
Pays: England
ID NLM: 101139812

Informations de publication

Date de publication:
28 May 2021
Historique:
received: 11 03 2021
accepted: 15 05 2021
entrez: 29 5 2021
pubmed: 30 5 2021
medline: 21 10 2021
Statut: epublish

Résumé

Plant-based milk alternatives are more popular than ever, and chickpea-based milks are among the most commercially relevant products. Unfortunately, limited nutritional value because of low levels of the essential amino acid L-lysine, low digestibility and unpleasant taste are challenges that must be addressed to improve product quality and meet consumer expectations. Using in-silico screening and food safety classifications, 31 strains were selected as potential L-lysine producers from approximately 2,500 potential candidates. Beneficially, 30% of the isolates significantly accumulated amino acids (up to 1.4 mM) during chickpea milk fermentation, increasing the natural level by up to 43%. The best-performing strains, B. amyloliquefaciens NCC 156 and L. paracasei subsp. paracasei NCC 2511, were tested further. De novo lysine biosynthesis was demonstrated in both strains by B. amyloliquefaciens NCC 156 and L. paracasei subsp. paracasei NCC 2511 emerged as multi-benefit microbes for chickpea milk fermentation with strong potential for industrial processing of the plant material. Given the high number of L-lysine-producing isolates identified in silico, this concept appears promising to support strain selection for food fermentation.

Sections du résumé

BACKGROUND BACKGROUND
Plant-based milk alternatives are more popular than ever, and chickpea-based milks are among the most commercially relevant products. Unfortunately, limited nutritional value because of low levels of the essential amino acid L-lysine, low digestibility and unpleasant taste are challenges that must be addressed to improve product quality and meet consumer expectations.
RESULTS RESULTS
Using in-silico screening and food safety classifications, 31 strains were selected as potential L-lysine producers from approximately 2,500 potential candidates. Beneficially, 30% of the isolates significantly accumulated amino acids (up to 1.4 mM) during chickpea milk fermentation, increasing the natural level by up to 43%. The best-performing strains, B. amyloliquefaciens NCC 156 and L. paracasei subsp. paracasei NCC 2511, were tested further. De novo lysine biosynthesis was demonstrated in both strains by
CONCLUSIONS CONCLUSIONS
B. amyloliquefaciens NCC 156 and L. paracasei subsp. paracasei NCC 2511 emerged as multi-benefit microbes for chickpea milk fermentation with strong potential for industrial processing of the plant material. Given the high number of L-lysine-producing isolates identified in silico, this concept appears promising to support strain selection for food fermentation.

Identifiants

pubmed: 34049541
doi: 10.1186/s12934-021-01595-2
pii: 10.1186/s12934-021-01595-2
pmc: PMC8161961
doi:

Substances chimiques

Flavoring Agents 0
Sugars 0
Lysine K3Z4F929H6

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

109

Références

J Agric Food Chem. 2008 Apr 23;56(8):2780-7
pubmed: 18363355
EFSA J. 2017 Mar 14;15(3):e04664
pubmed: 32625421
Angew Chem Int Ed Engl. 2006 Sep 25;45(38):6254-61
pubmed: 16983730
Biotechnol Lett. 2003 Mar;25(5):377-80
pubmed: 12882556
Int J Food Microbiol. 2005 Sep 25;104(1):69-82
pubmed: 16002169
PLoS One. 2011 Jan 17;6(1):e15964
pubmed: 21264216
J Agric Food Chem. 2008 Jan 9;56(1):99-105
pubmed: 18072744
J Food Sci. 2011 Jan-Feb;76(1):S20-5
pubmed: 21535711
Br J Nutr. 2012 Aug;108 Suppl 1:S11-26
pubmed: 22916806
Food Chem. 2016 Feb 1;192:965-71
pubmed: 26304436
Int J Syst Bacteriol. 1998 Oct;48 Pt 4:1101-9
pubmed: 9828412
Food Res Int. 2018 Aug;110:42-51
pubmed: 30029705
Appl Microbiol Biotechnol. 2009 Jan;81(6):987-99
pubmed: 19015847
Crit Rev Food Sci Nutr. 1986;25(2):107-58
pubmed: 3549160
J Dairy Sci. 2007 Apr;90(4):1635-43
pubmed: 17369203
Nutrients. 2016 Nov 29;8(12):
pubmed: 27916819
Biotechnol Bioeng. 2002 Nov 20;80(4):477-9
pubmed: 12325156
Microbiology (Reading). 2006 Jan;152(Pt 1):105-112
pubmed: 16385120
Biotechnol Adv. 2017 May - Jun;35(3):361-374
pubmed: 28284993
J Food Sci Technol. 2013 Oct;50(5):979-85
pubmed: 24426006
J Am Coll Nutr. 1997 Feb;16(1):7-21
pubmed: 9013429
Nahrung. 2003 Aug;47(4):226-7
pubmed: 13678257
Microb Cell Fact. 2008 Mar 13;7:8
pubmed: 18339202
Sci Rep. 2017 Aug 30;7(1):9947
pubmed: 28855510
J Appl Microbiol. 2017 Apr;122(4):857-869
pubmed: 28063197
Biotechnol Bioeng. 2004 Jul 5;87(1):1-6
pubmed: 15211482
J Mol Biol. 2006 Sep 29;362(4):640-55
pubmed: 16934839
Appl Environ Microbiol. 2013 Sep;79(18):5670-81
pubmed: 23851099
Anal Biochem. 2005 May 1;340(1):171-3
pubmed: 15802143
J Agric Food Chem. 2010 Jul 28;58(14):8344-50
pubmed: 20575540
J Appl Microbiol. 2004;97(5):1029-37
pubmed: 15479419
Int J Food Microbiol. 2017 Dec 4;262:14-22
pubmed: 28950162
Int J Food Microbiol. 2014 Sep 1;186:32-41
pubmed: 24984220
Environ Microbiol. 2014 Jun;16(6):1898-917
pubmed: 24571712
Appl Environ Microbiol. 2008 Aug;74(15):4590-600
pubmed: 18539796
Food Chem. 2008 Aug 15;109(4):709-21
pubmed: 26049983
Proc Nutr Soc. 1999 May;58(2):249-60
pubmed: 10466163
Food Chem. 2019 May 15;280:83-95
pubmed: 30642511
Curr Opin Biotechnol. 2018 Dec;54:128-137
pubmed: 30077860
Microb Cell Fact. 2007 Feb 07;6:6
pubmed: 17286851
Amino Acids. 2014 Sep;46(9):2165-75
pubmed: 24879631
Metab Eng. 2018 May;47:357-373
pubmed: 29654833
Nucleic Acids Res. 2003 Jan 1;31(1):383-7
pubmed: 12520028
Bioinformatics. 2011 Feb 15;27(4):534-40
pubmed: 21149278
Clin Oral Investig. 2011 Aug;15(4):471-6
pubmed: 20502929
PeerJ. 2016 Aug 04;4:e2292
pubmed: 27602272
Food Chem. 2008 May 15;108(2):571-81
pubmed: 26059135
Int J Syst Bacteriol. 1994 Apr;44(2):223-9
pubmed: 8186088
Crit Rev Food Sci Nutr. 2015;55(8):1137-45
pubmed: 24915347
Food Sci Biotechnol. 2016 Apr 30;25(2):525-532
pubmed: 30263301
Appl Microbiol Biotechnol. 2012 Feb;93(3):903-16
pubmed: 22159887
Int J Food Microbiol. 2002 Jan 30;72(1-2):53-62
pubmed: 11843413
J Ind Microbiol Biotechnol. 2004 Dec;31(12):559-64
pubmed: 15662546
J Bacteriol. 2014 Aug 15;196(16):2934-43
pubmed: 24914178
J Food Sci Technol. 2016 Sep;53(9):3408-3423
pubmed: 27777447
J Bacteriol. 1991 Jul;173(14):4510-6
pubmed: 1906065
Microb Cell Fact. 2018 Oct 16;17(1):162
pubmed: 30326916
J Bacteriol. 2010 Nov;192(22):5874-80
pubmed: 20833801
Int J Food Microbiol. 2007 Jun 10;117(1):120-4
pubmed: 17477997
J Bacteriol. 2005 Nov;187(21):7500-10
pubmed: 16237033
Metab Eng. 2018 Nov;50:122-141
pubmed: 30031852
Biotechnol Rep (Amst). 2015 Aug 20;8:45-55
pubmed: 28352572
J Sci Food Agric. 2017 Jan;97(1):135-143
pubmed: 26940283
Appl Microbiol Biotechnol. 2019 Dec;103(23-24):9263-9275
pubmed: 31686143
Metab Eng. 2017 Nov;44:198-212
pubmed: 29037780
Yeast. 2002 Nov;19(15):1351-63
pubmed: 12402244
Crit Rev Food Sci Nutr. 2016;56(3):339-49
pubmed: 25575046

Auteurs

Muzi Tangyu (M)

Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.

Michel Fritz (M)

Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.

Rosa Aragao-Börner (R)

Nestlé Research Center, Lausanne, Switzerland.

Lijuan Ye (L)

Nestlé Research Center, Lausanne, Switzerland.

Biljana Bogicevic (B)

Nestlé Research Center, Lausanne, Switzerland.

Christoph J Bolten (CJ)

Nestlé Product Technology Center Food, Singen, Germany.

Christoph Wittmann (C)

Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany. christoph.wittmann@uni-saarland.de.

Articles similaires

Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Humans Female Longitudinal Studies Child Male
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases
Vibrio Whole Genome Sequencing Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization Genome, Bacterial Water Microbiology

Classifications MeSH