Genome-wide analysis of ARF transcription factors reveals HcARF5 expression profile associated with the biosynthesis of β-ocimene synthase in Hedychium coronarium.


Journal

Plant cell reports
ISSN: 1432-203X
Titre abrégé: Plant Cell Rep
Pays: Germany
ID NLM: 9880970

Informations de publication

Date de publication:
Jul 2021
Historique:
received: 24 02 2021
accepted: 28 04 2021
pubmed: 31 5 2021
medline: 17 7 2021
entrez: 30 5 2021
Statut: ppublish

Résumé

Herein, 37 ARF genes were identified and analyzed in Hedychium coronarium and HcARF5 showed a potential role in the regulation of HcTPS3. Auxin is an important plant hormone, implicated in various aspects of plant growth and development processes especially in the biosynthesis of various secondary metabolites. Auxin response factors (ARF) belong to the transcription factors (TFs) gene family and play a crucial role in transcriptional activation/repression of auxin-responsive genes by directly binding to their promoter region. Nevertheless, whether ARF genes are involved in the regulatory mechanism of volatile compounds in flowering plants is largely unknown. β-ocimene is a key floral volatile compound synthesized by terpene synthase 3 (HcTPS3) in Hedychium coronarium. A comprehensive analysis of H. coronarium genome reveals 37 candidate ARF genes in the whole genome. Tissue-specific expression patterns of HcARFs family members were assessed using available transcriptome data. Among them, HcARF5 showed a higher expression level in flowers, and significantly correlated with the key structural β-ocimene synthesis gene (HcTPS3). Furthermore, transcript levels of both genes were associated with the flower development. Under hormone treatments, the response of HcARF5 and HcTPS3, and the emission level of β-ocimene contents were evaluated. Subcellular and transcriptional activity assay showed that HcARF5 localizes to the nucleus and possesses transcriptional activity. Yeast one-hybrid (Y1H) and dual-luciferase assays revealed that HcARF5 directly regulates the transcriptional activity of HcTPS3. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that HcARF5 interacts with scent-related HcIAA4, HcIAA6, and HcMYB1 in vivo. Overall, these results indicate that HcARF5 is potentially involved in the regulation of β-ocimene synthesis in H. coronarium.

Identifiants

pubmed: 34052884
doi: 10.1007/s00299-021-02709-1
pii: 10.1007/s00299-021-02709-1
doi:

Substances chimiques

Acyclic Monoterpenes 0
Alkenes 0
MicroRNAs 0
Plant Growth Regulators 0
Plant Proteins 0
Transcription Factors 0
beta-ocimene 13877-91-3
Alkyl and Aryl Transferases EC 2.5.-
terpene synthase EC 2.5.1.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1269-1284

Subventions

Organisme : National Natural Science Foundation of China
ID : 31770738
Organisme : National Natural Science Foundation of China
ID : 31870690

Références

Abbas F, Ke Y, Yu R, Fan Y (2019) Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium ‘Siberia.’ Planta 249:71–93
pubmed: 30218384
Abbas F, Ke Y, Yu R, Yue Y, Amanullah S, Jahangir MM, Fan Y (2017) Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta 246:803–816
pubmed: 28803364
Abbas F, Ke Y, Zhou Y, Ashraf U, Li X, Yu Y, Yue Y, Ahmed KW, Yu R, Fan Y (2020a) Molecular cloning, characterization and expression analysis of LoTPS2 and LoTPS4 involved in floral scent formation in oriental hybrid Lilium variety ‘Siberia.’ Phytochemistry 173:112294
pubmed: 32058861
Abbas F, Ke Y, Zhou Y, Waseem M, Yu Y, Ashraf U et al (2020b) Cloning, functional characterization and expression analysis of LoTPS5 from Lilium ‘Siberia.’ Gene 756:144921
pubmed: 32593719
Abbas F, Ke Y, Zhou Y, Yu Y, Waseem M, Ashraf U, Wang C, Wang X, Li X, Yue Y, Yu R, Fan Y (2021) Genome-wide analysis reveals the potential role of MYB transcription factors in floral scent formation in Hedychium coronarium. J Essent Oil Res 12:623742
Báez D, Pino JA, Morales D (2011) Floral scent composition in Hedychium coronarium J. Koenig analyzed by SPME. J Essent Oil Res 23:64–67
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G et al (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602
pubmed: 14651850
Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438
pubmed: 12660784
Cen H, Wang T, Liu H, Tian D, Zhang Y (2020) Melatonin application improves salt tolerance of alfalfa (Medicago sativa L.) by enhancing antioxidant capacity. Plants 9:220
pmcid: 7076651
Chen G, Yue Y, Li L, Li Y, Li H, Ding W et al (2020) Genome-wide identification of the auxin response factor (ARF) gene family and their expression analysis during flower development of Osmanthus fragrans. Forests 11:245
Comeron JM (1999) K-Estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 15:763–764
pubmed: 10498777
Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159
pubmed: 21622958 pmcid: 3125753
Die JV, Gil J, Millan T (2018) Genome-wide identification of the auxin response factor gene family in Cicer arietinum. BMC Genom 19:301
Donner TJ, Sherr I, Scarpella E (2009) Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136:3235–3246
pubmed: 19710171
Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32
pubmed: 23383981
Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Fäldt J et al (2003) (E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15:1227–1241
pubmed: 12724546 pmcid: 153728
Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574
pubmed: 16176952
Fan Y, Yu R, Huang Y, Chen Y (2003) Studies on the essential constituent of Hedychium flavum and H. coronarium. Acta Horti Sin 30:475
Fan YP, Wang XR, Yu RC, Yang P (2007) Analysis on the aroma components in several species of Hedychium. Acta Horti Sin 34:231
Farré-Armengol G, Filella I, Llusià J, Peñuelas J (2017) β-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules 22:1148
pmcid: 6152128
Fransson P (1958) Studies on the interaction of antiauxin and native auxin in wheat roots. Physiol Plantarum 11:644–654
Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T et al (2003) Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426:147–153
pubmed: 14614497
Furutani M, Vernoux T, Traas J, Kato T, Tasaka M, Aida M (2004) PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131:5021–5030
pubmed: 15371311
Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nature Chem Biol 3:408–414
Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460
pubmed: 17900969
Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385
pubmed: 12036261
Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD et al (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13
pubmed: 16359558 pmcid: 1334188
He Y, Liu X, Ye L, Pan C, Chen L, Zou T, Lu G (2016) Genome-wide identification and expression analysis of two-component system genes in tomato. Int J Mol Sci 17:1204
pmcid: 5000602
Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300
pubmed: 9847208 pmcid: 148163
Hu W, Zuo J, Hou X, Yan Y, Wei Y, Liu J et al (2015) The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Front Plant Sci 6:742
pubmed: 26442055 pmcid: 4569978
Kalluri UC, DiFazio SP, Brunner AM, Tuskan GA (2007) Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biol 7:59
pubmed: 17986329 pmcid: 2174922
Ke Y, Abbas F, Zhou Y, Yu R, Yue Y, Li X et al (2019) Genome-Wide Analysis and Characterization of the Aux/IAA Family Genes Related to Floral Scent Formation in Hedychium coronarium. Int J Mol Sci 20:3235
pmcid: 6651449
Krogan NT, Ckurshumova W, Marcos D, Caragea AE, Berleth T (2012) Deletion of MP/ARF5 domains III and IV reveals a requirement for Aux/IAA regulation in Arabidopsis leaf vascular patterning. New Phytol 194:391–401
pubmed: 22320407
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874
pubmed: 27004904 pmcid: 27004904
Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948
Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR (2004) Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev Cell 7:193–204
pubmed: 15296716
Li SB, Xie ZZ, Hu CG, Zhang JZ (2016) A review of auxin response factors (ARFs) in plants. Front Plant Sci 7:47
pubmed: 26870066 pmcid: 4737911
Liu K, Yuan C, Li H, Lin W, Yang Y, Shen C et al (2015) Genome-wide identification and characterization of auxin response factor (ARF) family genes related to flower and fruit development in papaya (Carica papaya L.). BMC Genom 16:1–12
Liu Z, Shi MZ, Xie DY (2014) Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins. Planta 239:765–781
pubmed: 24370633
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408
Luo XC, Sun MH, Xu RR, Shu HR, Wang JW, Zhang SZ (2014) Genomewide identification and expression analysis of the ARF gene family in apple. J Genet 93:785–797
pubmed: 25572237
Medina-Puche L, Molina-Hidalgo FJ, Boersma M, Schuurink RC, López-Vidriero I, Solano R et al (2015) An R2R3-MYB transcription factor regulates eugenol production in ripe strawberry fruit receptacles. Plant Physiol 168:598–614
pubmed: 25931522 pmcid: 4453772
Miresmailli S, Gries R, Gries G, Isman ZRH, MB, (2010) Herbivore-induced plant volatiles allow detection of Trichoplusia ni (Lepidoptera: Noctuidae) infestation on greenhouse tomato plants. Pest Manag Sci 66:916–924
pubmed: 20602512
Muhlemann JK, Klempien A, Dudareva N (2014) Floral volatiles: from biosynthesis to function. Plant Cell Environ 37:1936–1949
pubmed: 24588567
Muhlemann JK, Maeda H, Chang CY, San Miguel P, Baxter I, Cooper B et al (2012) Developmental changes in the metabolic network of snapdragon flowers. PLoS ONE 7:e40381
pubmed: 22808147 pmcid: 3394800
Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584:2965–2973
pubmed: 20553718
Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ et al (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118
pubmed: 16107481
Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C et al (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463
pubmed: 15659631 pmcid: 548818
Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi KI, Tanaka A et al (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol 133:1135–1147
pubmed: 14526108 pmcid: 281609
Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17:2899–2910
pubmed: 16199616 pmcid: 1276018
Peng J, Berbel A, Madueño F, Chen R (2017) AUXIN RESPONSE FACTOR3 regulates compound leaf patterning by directly repressing PALMATE-LIKE PENTAFOLIATA1 expression in Medicago truncatula. Front Plant Sci 8:1630
pubmed: 28979286 pmcid: 5611443
Pickett J, Rasmussen H, Woodcock C, Matthes M, Napier J (2003) Plant stress signalling: understanding and exploiting plant–plant interactions. Portland Press Ltd
Shen C, Yue R, Sun T, Zhang L, Xu L, Tie S et al (2015) Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula. Front Plant Sci 6:73
pubmed: 25759704 pmcid: 4338661
Su Z, Wang L, Li W, Zhao L, Huang X, Azam SM et al (2017) Genome-wide identification of auxin response factor (ARF) genes family and its tissue-specific prominent expression in pineapple (Ananas comosus). Trop Plant Biol 10:86–96
Tan XL, Fan ZQ, Kuang JF, Lu WJ, Reiter RJ, Lakshmanan P et al (2019) Melatonin delays leaf senescence of Chinese flowering cabbage by suppressing ABFs-mediated abscisic acid biosynthesis and chlorophyll degradation. J Pinn Res 67:e12570
Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320:486–488
pubmed: 18436778
Tuan PA, Bai S, Yaegaki H, Tamura T, Hihara S, Moriguchi T et al (2015) The crucial role of PpMYB10. 1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biol 15:280
pubmed: 26582106 pmcid: 4652394
Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Nat Acad Sci 96:5844–5849
pubmed: 10318972 pmcid: 21948
Van Ha C, Le DT, Nishiyama R, Watanabe Y, Sulieman S, Tran UT et al (2013) The auxin response factor transcription factor family in soybean: genome-wide identification and expression analyses during development and water stress. DNA Res 20:511–524
pubmed: 23810914 pmcid: 3789561
Wang CK, Han PL, Zhao YW, Ji XL, Yu JQ, You CX et al (2020a) Auxin regulates anthocyanin biosynthesis through the auxin repressor protein MdIAA26. Biochem Biophys Res Commun 533:717–722
pubmed: 32981681
Wang CK, Han PL, Zhao YW, Yu JQ, You CX, Hu DG et al (2020b) Genome-wide analysis of auxin response factor (ARF) genes and functional identification of MdARF2 reveals the involvement in the regulation of anthocyanin accumulation in apple. N Z J Crop Horti Sci. https://doi.org/10.1080/01140671.2020.1779756
doi: 10.1080/01140671.2020.1779756
Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H et al (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24
pubmed: 17408882
Wang YC, Wang N, Xu HF, Jiang SH, Fang HC, Su MY et al (2018) Auxin regulates anthocyanin biosynthesis through the Aux/IAA–ARF signaling pathway in apple. Hortic Res 5:1–11
pubmed: 29423231 pmcid: 5798812
Wen J, Guo P, Ke Y, Liu M, Li P, Wu Y et al (2019) The auxin response factor gene family in allopolyploid Brassica napus. PLoS ONE 14:e0214885
pubmed: 30958842 pmcid: 6453480
Wils CR, Kaufmann K (2017) Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Biochim Biophys Gene Regul Mech 1860:95–105
Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735
pubmed: 15749753 pmcid: 4246732
Wu Z, Raven P (2000) Flora of China, vol. 24 (Flagellariaceae through Marantaceae). Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis.
Xie R, Pang S, Ma Y, Deng L, He S, Yi S et al (2015) The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A. Mol Genet Genom 290:2089–2105
Xing H, Pudake RN, Guo G, Xing G, Hu Z, Zhang Y et al (2011) Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genom 12:1–13
Yue Y, Yu R, Fan Y (2014) Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium. Planta 240:745–762
pubmed: 25056927
Yue Y, Yu R, Fan Y (2015) Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium. BMC Genom 16:470
Zhang X, Zhang H, Zhang H, Tang M (2020) Exogenous melatonin application enhances Rhizophagus irregularis symbiosis and induces the antioxidant response of Medicago truncatula under lead stress. Front Microbiol 11:516
pubmed: 32351459 pmcid: 7174712
Zhang Y, Zeng Z, Chen C, Li C, Xia R, Li J (2019) Genome-wide characterization of the auxin response factor (ARF) gene family of litchi (Litchi chinensis Sonn.): Phylogenetic analysis, miRNA regulation and expression changes during fruit abscission. PeerJ 7:e6677
pubmed: 30976465 pmcid: 6451834
Zouine M, Fu Y, Chateigner-Boutin AL, Mila I, Frasse P, Wang H et al (2014) Characterization of the tomato ARF gene family uncovers a multi-levels post-transcriptional regulation including alternative splicing. PLoS ONE 9:84203

Auteurs

Farhat Abbas (F)

The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.

Yanguo Ke (Y)

The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
College of Economics and Management, Kunming University, Kunming, 650214, China.

Yiwei Zhou (Y)

The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.

Yunyi Yu (Y)

The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.

Muhammad Waseem (M)

College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.

Umair Ashraf (U)

Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan.

Xinyue Li (X)

The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.

Rangcai Yu (R)

College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.

Yanping Fan (Y)

The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China. fanyanping@scau.edu.cn.
Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China. fanyanping@scau.edu.cn.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH