Identification of glutathione transferase gene associated with partial resistance to Sclerotinia stem rot of soybean using genome-wide association and linkage mapping.
Ascomycota
/ physiology
Chromosome Mapping
/ methods
Chromosomes, Plant
/ genetics
Disease Resistance
/ genetics
Gene Expression Regulation, Plant
Genome, Plant
Genome-Wide Association Study
Glutathione Transferase
/ genetics
Linkage Disequilibrium
Plant Diseases
/ genetics
Plant Proteins
/ genetics
Polymorphism, Single Nucleotide
Glycine max
/ genetics
Journal
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
ISSN: 1432-2242
Titre abrégé: Theor Appl Genet
Pays: Germany
ID NLM: 0145600
Informations de publication
Date de publication:
Aug 2021
Aug 2021
Historique:
received:
26
09
2020
accepted:
06
05
2021
pubmed:
1
6
2021
medline:
1
10
2021
entrez:
31
5
2021
Statut:
ppublish
Résumé
Association and linkage mapping techniques were used to identify and verify single nucleotide polymorphisms (SNPs) associated with Sclerotinia sclerotiorum resistance. A novel resistant gene, GmGST , was cloned and shown to be involved in soybean resistance to SSR. Sclerotinia stem rot (SSR), caused by the fungus Sclerotinia sclerotiorum, is one of the most devastating diseases in soybean (Glycine max (Linn.) Merr.) However, the genetic architecture underlying soybean resistance to SSR is poorly understood, despite several mapping and gene mining studies. In the present study, the identification of quantitative trait loci (QTLs) involved in the resistance to S. sclerotiorum was conducted in two segregating populations: an association population that consisted of 261 diverse soybean germplasms, and the MH population, derived from a cross between a partially resistant cultivar (Maple arrow) and a susceptible cultivar (Hefeng25). Three and five genomic regions affecting resistance were detected by genome-wide association study to control the lesion length of stems (LLS) and the death rate of seedling (DRS), respectively. Four QTLs were detected to underlie LLS, and one QTL controlled DRS after SSR infection. A major locus on chromosome (Chr.) 13 (qDRS13-1), which affected both DRS and LLS, was detected in both the natural population and the MH population. GmGST, encoding a glutathione S-transferase, was cloned as a candidate gene in qDRS13-1. GmGST was upregulated by the induction of the partially resistant cultivar Maple arrow. Transgenic experiments showed that the overexpression of GmGST in soybean increased resistance to S. sclerotiorum and the content of soluble pigment in stems of soybean. The results increase our understanding of the genetic architecture of soybean resistance to SSR and provide a framework for the future marker-assisted breeding of resistant soybean cultivars.
Identifiants
pubmed: 34057551
doi: 10.1007/s00122-021-03855-6
pii: 10.1007/s00122-021-03855-6
doi:
Substances chimiques
Plant Proteins
0
Glutathione Transferase
EC 2.5.1.18
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2699-2709Subventions
Organisme : National Natural Science Foundation of China
ID : 31871650
Organisme : National Natural Science Foundation of China
ID : 31671717
Organisme : National Natural Science Foundation of China
ID : 31471517
Organisme : National Natural Science Foundation of China (CN)
ID : 31971967
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10:1135–1149
pubmed: 9668133
pmcid: 144053
doi: 10.1105/tpc.10.7.1135
Bastien M, Huynh TT, Giroux G, Iquira E, Belzile F (2012) A reproducible assay for measuring partial resistance to Sclerotinia sclerotiorum in soybean. Can J Plant Ence 92:279–288
doi: 10.4141/cjps2011-101
Bastien M, Sonah H, Belzile F (2014) Genome wide association mapping of sclerotinia sclerotiorum resistance in soybean with a genotyping-by-sequencing approach. The Plant Genome 7:1–13
doi: 10.3835/plantgenome2013.10.0030
Boland GJ, Hall R (1986) Growth room evaluation of soybean cultivars for resistance to Sclerotinta sclerotiorum. Can J Plant Sci 66:559–564
doi: 10.4141/cjps86-075
Bradbury P, Zhang Z, Kroon D, Casstevens T, Y, Buckler E, (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635
pubmed: 17586829
pmcid: 17586829
doi: 10.1093/bioinformatics/btm308
Briard M, Dutertre M, Brygoo Y (1997) Du nouveau du côté des Sclerotinia. Phytoma 490:1519
Cline MN, Jacobsen BJ (1983) Methods for evaluating soybean cultivars for resistance to Sclerotinia sclerotiorum. Plant Dis 67:784–786
doi: 10.1094/PD-67-784
Coyne DP, Steadman JR, Anderson FN (1974) Effect of modified plant architecture of great northern dry bean varieties (Phaseolus vulgaris) on white mold severity, and components of yield. Plant Dis Rep 58:379–382
David G, Nelson RT, Cannon SB, Shoemaker RC (2010) Soybase, the usda-ars soybean genetics and genomics database. Nucl Acids Res 38(suppl_1):D843–D846
doi: 10.1093/nar/gkp798
Dudler R, Hertig C, Rebmann G, Bull J, Mauch F (1991) Pathogen-induced genes in wheat. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions, vol. 1. Current plant science and biotechnology in agriculture, vol 10. Springer, Dordrecht
Esposito AM, Kinzy TG (2010) The eukaryotic translation elongation Factor 1Bgamma has a non-guanine nucleotide exchange factor role in protein metabolism. J Biol Chem 285:37995–38004
pubmed: 20926387
pmcid: 2992233
doi: 10.1074/jbc.M110.160887
Goodstein DM, Shu S, Russell H, Rochak N, Hayes RD, Joni F, Therese M, William D, Uffe H, Nicholas P (2012) Phytozome: a comparative platform for green plant genomics. Nucl Acids Res 40:1178–1186
doi: 10.1093/nar/gkr944
Grau CR (1982) Resistance of soybean cultivars to Sclerotinia sclerotiorum. Plant Dis 66:506–508
doi: 10.1094/PD-66-506
Hahn K, Strittmatter G (1994) Pathogen-defence gene prp1-1 from potato encodes an auxin-responsive glutathione S-transferase. Eur J Biochem 226(2):619–626
pubmed: 8001577
doi: 10.1111/j.1432-1033.1994.tb20088.x
pmcid: 8001577
Han Y, Zhao X, Liu D, Li Y, Lightfoot DA, Yang Z, Zhao L, Zhou G, Wang Z, Huang L, Zhang Z, Qiu L, Zheng H, Li W (2016) Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol 209:871–884
pubmed: 26479264
doi: 10.1111/nph.13626
pmcid: 26479264
He J, Meng S, Zhao T, Xing G, Gai J (2017) An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Tagtheoretical Appl Geneticstheoretische Und Angewandte Genetik 130:2327
doi: 10.1007/s00122-017-2962-9
Kim HS, Diers BW (2000) Inheritance of partial resistance to sclerotinia stem rot in soybean. Crop Ence 40:5561
Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12
Kull LS, Vuong TD, Powers KS, Eskridge KM, Steadman JR, Hartman GL (2003) Evaluation of resistance screening methods for Sclerotinia stem rot of soybean and dry bean. Plant Dis 87:1471–1476
pubmed: 30812389
doi: 10.1094/PDIS.2003.87.12.1471
pmcid: 30812389
Kurle JE, Grau CR, Oplinger ES, Mengistu A (2001) Tillage, crop sequence, and cultivar effects on sclerotinia stem rot incidence and yield in soybean. Agron J 93:973–982
doi: 10.2134/agronj2001.935973x
Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7:1494–1496
pubmed: 24719468
doi: 10.1093/mp/ssu044
pmcid: 24719468
Liao W, Ji L, Wang J, Chen Z, Ye M, Ma H, An X (2014) Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa. Funct Integr Genomics 14:517–529
pubmed: 24870810
doi: 10.1007/s10142-014-0379-y
pmcid: 24870810
Li D, Sun M, Han Y, Teng W, Li W (2009a) Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum). Euphytica 172:49–57
doi: 10.1007/s10681-009-0036-z
Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J (2009b) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967
pubmed: 19497933
doi: 10.1093/bioinformatics/btp336
pmcid: 19497933
Li Y-h, Reif J, Ma Y-s, Hong H-l, Liu Z-x (2015) Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean. BMC Genom 16:841
doi: 10.1186/s12864-015-2049-4
Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J, Xu C, Sun X, Hou X, Wang X, Zheng H (2014) Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS ONE 9:e98855
pubmed: 24905985
pmcid: 4048240
doi: 10.1371/journal.pone.0098855
Liu HJ, Tang ZX, Han XM, Yang ZL, Zhang FM, Yang HL, Liu YJ, Zeng QY (2015) Divergence in enzymatic activities in the soybean GST supergene family provides new insight into the evolutionary dynamics of whole-genome duplicates. Mol Biol Evol 32:2844–2859
pubmed: 26219583
pmcid: 4651234
doi: 10.1093/molbev/msv156
Livak KJ, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCt method. Methods 25:402–408
doi: 10.1006/meth.2001.1262
Ma L, Zhang Y, Meng Q, Shi F, Jia L, Li Y (2018a) Enhancement of and oxalic acid resistance in tobacco by a novel pathogen-induced gst gene from sunflower. Crop Sci 58(3):1318–1327
doi: 10.2135/cropsci2017.08.0479
Ma L, Zhang Y, Meng Q, Shi F, Liu J, Li Y (2018b) Molecular cloning, identification of GSTs family in sunflower and their regulatory roles in biotic and abiotic stress. World J Microbiol Biotechnol 34(8):109
pubmed: 29971547
doi: 10.1007/s11274-018-2481-0
pmcid: 29971547
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly MJGr, (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genom Res 20:1297–1303
doi: 10.1101/gr.107524.110
Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop J 3:269–283
doi: 10.1016/j.cj.2015.01.001
Messner B., Thulke O., Schäffner A.R. (2003) Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates. Planta 217:138–146
doi: 10.1007/s00425-002-0969-0
pubmed: 12721858
pmcid: 12721858
Mila AL, Yang XB (2008) Effects of fluctuating soil temperature and water potential on sclerotia germination and apothecial production of sclerotinia sclerotiorum. Plant Dis 92:78–82
pubmed: 30786387
doi: 10.1094/PDIS-92-1-0078
pmcid: 30786387
Moellers TC, Singh A, Zhang J, Brungardt J, Kabbage M, Mueller DS, Grau CR, Ranjan A, Smith DL, Chowda-Reddy RV (2017) Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments. Sci Rep 7:3554
pubmed: 28620159
pmcid: 5472596
doi: 10.1038/s41598-017-03695-9
Mueller DS, Bradley CA, Grau CR, Gaska JM, Kurle JE, Pedersen WL (2004) Application of thiophanate-methyl at different host growth stages for management of sclerotinia stem rot in soybean. Crop Prot 23:983–988
doi: 10.1016/j.cropro.2004.02.013
Mueller DS, Dorrance AE, Derksen RC, Ozkan E, Pedersen WL (2002) Efficacy of fungicides on sclerotinia sclerotiorum and their potential for control of sclerotinia stem rot on soybean. Plant Dis 86:26–31
pubmed: 30822994
doi: 10.1094/PDIS.2002.86.1.26
pmcid: 30822994
Padmanaban P, Viswanathan R, Mohanraj D, Section PP, Institute SB, Coimbatore I (2000) Possible involvement of anthocyanin compounds in resistance of sugarcane against red rot. Indian Phytopathol 53:311–313
Paz MM, Shou HX, Guo ZB, Zhang ZY, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179
doi: 10.1023/B:EUPH.0000030670.36730.a4
Peltier AJ, Bradley CA, Chilvers MI, Malvick DK, Mueller DS, Wise KA, Esker PD (2012) Biology, yield loss, and control of sclerotinia stem rot of soybean. J Int Pest Manag 3(2):B1–B7
doi: 10.1603/IPM11033
Rousseau G, Huynh Thanh T, Dostaler D, Rioux S (2004) Greenhouse and field assessments of resistance in soybean inoculated with sclerotia, mycelium, and ascospores of Sclerotinia sclerotiorum. Can J Plant Ence 84:615
doi: 10.4141/P03-003
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng JJn (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183
Šlndelářová M, Šlndelář L (1991) Subcellular localization of glucose-6-phosphate dehydrogenase in tobacco mesophyll protoplasts. Biol Plant 33:150–155
Sun M, Jing Y, Zhao X, Teng W, Qiu L, Zheng H, Li W, Han Y (2020) Genome-wide association study of partial resistance to sclerotinia stem rot of cultivated soybean based on the detached leaf method. PLoS ONE 15:e0233366
pubmed: 32421759
pmcid: 7233537
doi: 10.1371/journal.pone.0233366
Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Rep 5:10342
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8:e58700
pubmed: 23527008
pmcid: 3602454
doi: 10.1371/journal.pone.0058700
Vuong TD, Diers BW, Hartman GL (2015) Identification of QTL for resistance to sclerotinia stem rot in soybean plant introduction 194639. Crop Ence 48:2209–2214
Wang Z, Ma LY, Cao J, Li YL, Ding LN, Zhu KM, Yang YH, Tan XL (2019) Recent Advances in Mechanisms s of Plant Defense to Sclerotinia sclerotiorum. Front Plant Sci 10:1314
pubmed: 31681392
pmcid: 6813280
doi: 10.3389/fpls.2019.01314
Wegulo SN, Yang XB, Martinson CA (1998a) Soybean cultivar responses to Sclerotinia sclerotiorum in field and controlled environment studies. Plant Dis 82:1264–1270
pubmed: 30845417
doi: 10.1094/PDIS.1998.82.11.1264
pmcid: 30845417
Zhao X, Han Y, Li Y, Liu D, Sun M, Zhao Y, Lv C, Li D, Yang Z, Huang L (2015) Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps. Plant J Cell Mol Biol 82:245–255
doi: 10.1111/tpj.12810