Increased abundance of secreted hydrolytic enzymes and secondary metabolite gene clusters define the genomes of latent plant pathogens in the Botryosphaeriaceae.
CAZyme
Comparative genomics
Endophyte
Plant cell wall-degrading enzymes
Secondary metabolism
Secretome
Journal
BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258
Informations de publication
Date de publication:
04 Aug 2021
04 Aug 2021
Historique:
received:
26
01
2021
accepted:
30
06
2021
entrez:
5
8
2021
pubmed:
6
8
2021
medline:
7
8
2021
Statut:
epublish
Résumé
The Botryosphaeriaceae are important plant pathogens, but also have the ability to establish asymptomatic infections that persist for extended periods in a latent state. In this study, we used comparative genome analyses to shed light on the genetic basis of the interactions of these fungi with their plant hosts. For this purpose, we characterised secreted hydrolytic enzymes, secondary metabolite biosynthetic gene clusters and general trends in genomic architecture using all available Botryosphaeriaceae genomes, and selected Dothideomycetes genomes. The Botryosphaeriaceae genomes were rich in carbohydrate-active enzymes (CAZymes), proteases, lipases and secondary metabolic biosynthetic gene clusters (BGCs) compared to other Dothideomycete genomes. The genomes of Botryosphaeria, Macrophomina, Lasiodiplodia and Neofusicoccum, in particular, had gene expansions of the major constituents of the secretome, notably CAZymes involved in plant cell wall degradation. The Botryosphaeriaceae genomes were shown to have moderate to high GC contents and most had low levels of repetitive DNA. The genomes were not compartmentalized based on gene and repeat densities, but genes of secreted enzymes were slightly more abundant in gene-sparse regions. The abundance of secreted hydrolytic enzymes and secondary metabolite BGCs in the genomes of Botryosphaeria, Macrophomina, Lasiodiplodia, and Neofusicoccum were similar to those in necrotrophic plant pathogens and some endophytes of woody plants. The results provide a foundation for comparative genomic analyses and hypotheses to explore the mechanisms underlying Botryosphaeriaceae host-plant interactions.
Sections du résumé
BACKGROUND
BACKGROUND
The Botryosphaeriaceae are important plant pathogens, but also have the ability to establish asymptomatic infections that persist for extended periods in a latent state. In this study, we used comparative genome analyses to shed light on the genetic basis of the interactions of these fungi with their plant hosts. For this purpose, we characterised secreted hydrolytic enzymes, secondary metabolite biosynthetic gene clusters and general trends in genomic architecture using all available Botryosphaeriaceae genomes, and selected Dothideomycetes genomes.
RESULTS
RESULTS
The Botryosphaeriaceae genomes were rich in carbohydrate-active enzymes (CAZymes), proteases, lipases and secondary metabolic biosynthetic gene clusters (BGCs) compared to other Dothideomycete genomes. The genomes of Botryosphaeria, Macrophomina, Lasiodiplodia and Neofusicoccum, in particular, had gene expansions of the major constituents of the secretome, notably CAZymes involved in plant cell wall degradation. The Botryosphaeriaceae genomes were shown to have moderate to high GC contents and most had low levels of repetitive DNA. The genomes were not compartmentalized based on gene and repeat densities, but genes of secreted enzymes were slightly more abundant in gene-sparse regions.
CONCLUSION
CONCLUSIONS
The abundance of secreted hydrolytic enzymes and secondary metabolite BGCs in the genomes of Botryosphaeria, Macrophomina, Lasiodiplodia, and Neofusicoccum were similar to those in necrotrophic plant pathogens and some endophytes of woody plants. The results provide a foundation for comparative genomic analyses and hypotheses to explore the mechanisms underlying Botryosphaeriaceae host-plant interactions.
Identifiants
pubmed: 34348651
doi: 10.1186/s12864-021-07902-w
pii: 10.1186/s12864-021-07902-w
pmc: PMC8336260
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
589Informations de copyright
© 2021. The Author(s).
Références
J Nat Prod. 2020 Feb 28;83(2):453-460
pubmed: 31951128
Genome Res. 2008 May;18(5):821-9
pubmed: 18349386
PeerJ. 2019 Aug 26;7:e7447
pubmed: 31523495
Nat Commun. 2016 Sep 29;7:13072
pubmed: 27681013
Sci Rep. 2018 Apr 20;8(1):6321
pubmed: 29679020
BMC Genomics. 2019 Oct 28;20(1):782
pubmed: 31660859
Trends Microbiol. 2009 Apr;17(4):151-7
pubmed: 19299132
PLoS One. 2017 Oct 26;12(10):e0185056
pubmed: 29073143
PLoS Genet. 2010 Dec 23;6(12):e1001189
pubmed: 21203495
Plant Cell. 2007 Nov;19(11):3347-68
pubmed: 18024570
Nature. 2005 Dec 22;438(7071):1105-15
pubmed: 16372000
Nat Rev Microbiol. 2017 Dec;15(12):756-771
pubmed: 28781365
Methods Mol Biol. 2014;1127:29-51
pubmed: 24643550
Genome Announc. 2015 Sep 24;3(5):
pubmed: 26404600
Mol Plant Pathol. 2015 Jan;16(1):92-107
pubmed: 24889519
Genome Biol Evol. 2019 Mar 1;11(3):890-905
pubmed: 30793159
Bioinformatics. 2003 Jan 22;19(2):301-2
pubmed: 12538260
Persoonia. 2008 Dec;21:111-8
pubmed: 20396581
DNA Res. 2018 Feb 1;25(1):87-102
pubmed: 29036669
Fungal Biol. 2017 Apr;121(4):322-346
pubmed: 28317538
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Fungal Biol. 2014 May-Jun;118(5-6):516-23
pubmed: 24863480
Science. 2005 Jun 17;308(5729):1783-6
pubmed: 15845874
Chem Biodivers. 2016 Apr;13(4):395-402
pubmed: 26938016
IMA Fungus. 2017 Dec;8(2):385-396
pubmed: 29242781
EMBO J. 2000 Aug 1;19(15):4004-14
pubmed: 10921881
Mycol Res. 2005 Jun;109(Pt 6):661-86
pubmed: 16080390
Fungal Biol. 2016 Jan;120(1):26-42
pubmed: 26693682
FEMS Microbiol Rev. 2013 Jan;37(1):44-66
pubmed: 22846083
BMC Genomics. 2015 Jan 27;16:28
pubmed: 25623211
Biochem J. 2006 Nov 1;399(3):503-11
pubmed: 16846393
BMC Genomics. 2016 Aug 09;17:584
pubmed: 27506390
Nat Rev Microbiol. 2005 Dec;3(12):937-47
pubmed: 16322742
BMC Bioinformatics. 2011 Dec 22;12:491
pubmed: 22192575
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Genome Biol Evol. 2016 Jul 03;8(6):2044-64
pubmed: 27289099
Bioinformatics. 2014 May 1;30(9):1312-3
pubmed: 24451623
Front Microbiol. 2018 Mar 02;9:276
pubmed: 29551995
Genome Announc. 2013 Jun 13;1(3):
pubmed: 23766404
Fungal Divers. 2011 Nov 2;51(1):249-277
pubmed: 22368534
Biochimie. 2014 Jun;101:10-20
pubmed: 24355205
Nat Methods. 2011 Sep 29;8(10):785-6
pubmed: 21959131
PLoS One. 2015 Feb 13;10(2):e0115722
pubmed: 25679509
Plant Cell. 2008 Jul;20(7):1948-63
pubmed: 18660430
Fungal Biol. 2014 Feb;118(2):168-79
pubmed: 24528639
Plant J. 2005 May;42(3):364-75
pubmed: 15842622
Curr Opin Plant Biol. 2006 Aug;9(4):371-5
pubmed: 16713733
Fungal Genet Biol. 2014 Jan;62:55-61
pubmed: 24220137
Stud Mycol. 2013 Sep 30;76(1):31-49
pubmed: 24302789
Biotechnol Adv. 2016 Sep-Oct;34(5):976-983
pubmed: 27263000
Plant Physiol. 2011 Jun;156(2):756-69
pubmed: 21467214
Int J Mol Sci. 2019 Dec 03;20(23):
pubmed: 31816814
BMC Genomics. 2016 Aug 05;17:555
pubmed: 27496087
Mol Microbiol. 2004 Apr;52(2):399-411
pubmed: 15066029
Mol Plant Microbe Interact. 2002 Feb;15(2):120-8
pubmed: 11876424
Nat Prod Res. 2019 Aug;33(15):2223-2229
pubmed: 30445825
Proteome Sci. 2010 Sep 09;8:46
pubmed: 20828386
BMC Genomics. 2016 Dec 9;17(1):1015
pubmed: 27938347
Sci Rep. 2017 Dec 8;7(1):17217
pubmed: 29222463
Sci Rep. 2016 Apr 19;6:24638
pubmed: 27091329
PLoS Genet. 2016 Aug 11;12(8):e1005904
pubmed: 27513322
BMC Genomics. 2015 Jun 19;16:469
pubmed: 26084502
Mol Plant Pathol. 2019 Jan;20(1):3-7
pubmed: 30557450
IMA Fungus. 2015 Jun;6(1):233-48
pubmed: 26203426
PLoS Pathog. 2013 Feb;9(2):e1003177
pubmed: 23459172
Nat Commun. 2016 Sep 07;7:12662
pubmed: 27601008
Mol Plant Pathol. 2017 May;18(4):477-488
pubmed: 27682468
Stud Mycol. 2009;64:1-15S10
pubmed: 20169021
Stud Mycol. 2020 Feb 01;96:141-153
pubmed: 32206138
IMA Fungus. 2018 Jul;9:243-257
pubmed: 30622881
Curr Opin Genet Dev. 2015 Dec;35:57-65
pubmed: 26451981
Stud Mycol. 2017 Mar;86:1-28
pubmed: 28348446
Fungal Genet Biol. 2011 Jan;48(1):4-14
pubmed: 20519150
Mycologia. 2006 Nov-Dec;98(6):1041-52
pubmed: 17486979
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5459-E5466
pubmed: 29844193
Nat Rev Microbiol. 2012 May 08;10(6):417-30
pubmed: 22565130
G3 (Bethesda). 2013 Jan;3(1):41-63
pubmed: 23316438
Sci Rep. 2014 Jul 22;4:5783
pubmed: 25048173
PLoS Comput Biol. 2011 Oct;7(10):e1002195
pubmed: 22039361
Genome. 2020 Jan;63(1):37-52
pubmed: 31580730
Biol Proced Online. 2015 Apr 02;17:8
pubmed: 25866485
Nucleic Acids Res. 2003 Jan 1;31(1):319-21
pubmed: 12520012
Nat Genet. 2017 Jun;49(6):964-968
pubmed: 28481340
BMC Bioinformatics. 2006 Feb 09;7:62
pubmed: 16469098
PLoS One. 2016 Jul 19;11(7):e0157844
pubmed: 27434633
FEMS Microbiol Rev. 2013 Jan;37(1):67-93
pubmed: 22931103
Nat Commun. 2011 Feb 15;2:202
pubmed: 21326234
Biochem J. 2004 Sep 15;382(Pt 3):769-81
pubmed: 15214846
Mol Plant Microbe Interact. 2000 May;13(5):538-50
pubmed: 10796020
Mol Plant Microbe Interact. 2009 Dec;22(12):1601-10
pubmed: 19888825
Biotechnol Biofuels. 2015 Dec 08;8:208
pubmed: 26649073
BMC Genomics. 2016 Aug 11;17(1):615
pubmed: 27514986
J Mol Biol. 2001 Jan 19;305(3):567-80
pubmed: 11152613
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W429-32
pubmed: 17483518
Nucleic Acids Res. 2014 Sep;42(15):e119
pubmed: 24990371
Mol Plant Pathol. 2018 Jan;19(1):21-34
pubmed: 27608421
PLoS Genet. 2013;9(1):e1003233
pubmed: 23357949
Biomolecules. 2020 May 15;10(5):
pubmed: 32429259
Annu Rev Phytopathol. 2002;40:251-85
pubmed: 12147761
PLoS Genet. 2011 Jun;7(6):e1002070
pubmed: 21695235
BMC Genomics. 2013 Apr 23;14:274
pubmed: 23617724
BMC Genomics. 2014 Jan 03;15:6
pubmed: 24422981
Biotechnol Biofuels. 2013 Mar 21;6(1):41
pubmed: 23514094
Genome Announc. 2017 Jun 15;5(24):
pubmed: 28619814
BMC Genomics. 2014 Oct 12;15:891
pubmed: 25306241
Front Microbiol. 2016 Mar 03;7:238
pubmed: 26973616
Front Plant Sci. 2015 Aug 03;6:584
pubmed: 26284100
Mol Biol Evol. 2013 Aug;30(8):1987-97
pubmed: 23709260
IMA Fungus. 2014 Jun;5(1):135-40
pubmed: 25083413
Mycologia. 2008 Nov-Dec;100(6):851-66
pubmed: 19202840
BMC Genomics. 2014 Jul 01;15:549
pubmed: 24984952
Mycologia. 2020 May-Jun;112(3):491-503
pubmed: 32286912
BMC Genomics. 2012 Sep 19;13:493
pubmed: 22992219
Bioinformatics. 2016 Mar 1;32(5):767-9
pubmed: 26559507
FEBS J. 2009 Sep;276(18):5006-29
pubmed: 19682075
Genome Announc. 2017 Apr 6;5(14):
pubmed: 28385831
Infect Immun. 2007 Oct;75(10):4710-8
pubmed: 17646357
Sci Rep. 2015 Nov 04;5:15565
pubmed: 26531059
Mol Biol Evol. 2018 Mar 1;35(3):543-548
pubmed: 29220515
IMA Fungus. 2018 Jun;9(1):199-223
pubmed: 30018880
Nucleic Acids Res. 2018 Jan 4;46(D1):D624-D632
pubmed: 29145643
BMC Bioinformatics. 2009 Dec 15;10:421
pubmed: 20003500
J Biol Chem. 2019 Sep 13;294(37):13833-13849
pubmed: 31416836
PLoS Pathog. 2012;8(12):e1003037
pubmed: 23236275
Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101
pubmed: 29771380
Nucleic Acids Res. 2019 Jul 2;47(W1):W81-W87
pubmed: 31032519
Genome Announc. 2016 Oct 27;4(5):
pubmed: 27789635
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5
pubmed: 24270786