Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
12 2021
Historique:
received: 12 03 2021
accepted: 18 10 2021
entrez: 7 12 2021
pubmed: 8 12 2021
medline: 29 12 2021
Statut: ppublish

Résumé

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons.

Identifiants

pubmed: 34873335
doi: 10.1038/s41588-021-00973-1
pii: 10.1038/s41588-021-00973-1
pmc: PMC8648564
doi:

Substances chimiques

Glutamine 0RH81L854J
Cholesterol 97C5T2UQ7J

Types de publication

Journal Article Meta-Analysis

Langues

eng

Sous-ensembles de citation

IM

Pagination

1636-1648

Subventions

Organisme : Medical Research Council
ID : MC_UU_00011/4
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/K01417X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L501529/1
Pays : United Kingdom
Organisme : NINDS NIH HHS
ID : R56 NS073873
Pays : United States
Organisme : Medical Research Council
ID : G1001253
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L501542/1
Pays : United Kingdom
Organisme : Motor Neurone Disease Association
ID : ALCHALABI-TALBOT/APR14/926-794
Pays : United Kingdom
Organisme : Motor Neurone Disease Association
ID : ALCHALABI-DOBSON/APR14/829-791
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_G1000733
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0500289
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L021803/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0900635
Pays : United Kingdom
Organisme : Motor Neurone Disease Association
ID : SMITH/APR16/847-791
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_17115
Pays : United Kingdom
Organisme : Parkinson's UK
ID : G-0907
Pays : United Kingdom
Organisme : MRF
ID : MRF_MRF-060-0003-RG-SMITH
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00011/1
Pays : United Kingdom
Organisme : NINDS NIH HHS
ID : R01 NS073873
Pays : United States
Organisme : Parkinson's UK
ID : G-1307
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0600974
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R024804/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/J004758/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : G1100695
Pays : United Kingdom
Organisme : Motor Neurone Disease Association
ID : SHAW/NOV14/985-797
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L023784/2
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0701075
Pays : United Kingdom
Organisme : Motor Neurone Disease Association
ID : SHAW/APR15/970-797
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0901254
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0900688
Pays : United Kingdom

Investigateurs

Giancarlo Comi (G)
Nilo Riva (N)
Christian Lunetta (C)
Francesca Gerardi (F)
Maria Sofia Cotelli (MS)
Fabrizio Rinaldi (F)
Luca Chiveri (L)
Maria Cristina Guaita (MC)
Patrizia Perrone (P)
Mauro Ceroni (M)
Luca Diamanti (L)
Carlo Ferrarese (C)
Lucio Tremolizzo (L)
Maria Luisa Delodovici (ML)
Giorgio Bono (G)
Antonio Canosa (A)
Umberto Manera (U)
Rosario Vasta (R)
Alessandro Bombaci (A)
Federico Casale (F)
Giuseppe Fuda (G)
Paolina Salamone (P)
Barbara Iazzolino (B)
Laura Peotta (L)
Paolo Cugnasco (P)
Giovanni De Marco (G)
Maria Claudia Torrieri (MC)
Francesca Palumbo (F)
Salvatore Gallone (S)
Marco Barberis (M)
Luca Sbaiz (L)
Salvatore Gentile (S)
Alessandro Mauro (A)
Letizia Mazzini (L)
Fabiola De Marchi (F)
Lucia Corrado (L)
Sandra D'Alfonso (S)
Antonio Bertolotto (A)
Maurizio Gionco (M)
Daniela Leotta (D)
Enrico Odddenino (E)
Daniele Imperiale (D)
Roberto Cavallo (R)
Pietro Pignatta (P)
Marco De Mattei (M)
Claudio Geda (C)
Diego Maria Papurello (DM)
Graziano Gusmaroli (G)
Cristoforo Comi (C)
Carmelo Labate (C)
Luigi Ruiz (L)
Delfina Ferrandi (D)
Eugenia Rota (E)
Marco Aguggia (M)
Nicoletta Di Vito (N)
Piero Meineri (P)
Paolo Ghiglione (P)
Nicola Launaro (N)
Michele Dotta (M)
Alessia Di Sapio (A)
Guido Giardini (G)
Cinzia Tiloca (C)
Silvia Peverelli (S)
Franco Taroni (F)
Viviana Pensato (V)
Barbara Castellotti (B)
Giacomo P Comi (GP)
Roberto Del Bo (R)
Mauro Ceroni (M)
Stella Gagliardi (S)
Lucia Corrado (L)
Letizia Mazzini (L)
Flavia Raggi (F)
Costanza Simoncini (C)
Annalisa Lo Gerfo (A)
Maurizio Inghilleri (M)
Alessandra Ferlini (A)
Isabella L Simone (IL)
Bruno Passarella (B)
Vito Guerra (V)
Stefano Zoccolella (S)
Cecilia Nozzoli (C)
Ciro Mundi (C)
Maurizio Leone (M)
Michele Zarrelli (M)
Filippo Tamma (F)
Francesco Valluzzi (F)
Gianluigi Calabrese (G)
Giovanni Boero (G)
Augusto Rini (A)

Commentaires et corrections

Type : CommentIn
Type : ErratumIn
Type : CommentIn

Informations de copyright

© 2021. The Author(s).

Références

van Es, M. A. et al. Amyotrophic lateral sclerosis. Lancet 390, 2084–2098 (2017).
pubmed: 28552366 doi: 10.1016/S0140-6736(17)31287-4
Al-Chalabi, A., van den Berg, L. H. & Veldink, J. H. Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat. Rev. Neurol. 13, 96–104 (2017).
pubmed: 27982040 doi: 10.1038/nrneurol.2016.182
Trabjerg, B. B. et al. ALS in Danish registries: heritability and links to psychiatric and cardiovascular disorders. Neurol. Genet. 6, e398 (2020).
pubmed: 32211514 pmcid: 7073454 doi: 10.1212/NXG.0000000000000398
Ryan, M., Heverin, M., McLaughlin, R. L. & Hardiman, O. Lifetime risk and heritability of amyotrophic lateral sclerosis. JAMA Neurol. 76, 1367–1374 (2019).
pubmed: 31329211 pmcid: 6646974 doi: 10.1001/jamaneurol.2019.2044
Byrne, S., Elamin, M., Bede, P. & Hardiman, O. Absence of consensus in diagnostic criteria for familial neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry 83, 365–367 (2012).
pubmed: 22399794 doi: 10.1136/jnnp-2011-301530
Cirulli, E. T. et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436–1441 (2015).
pubmed: 25700176 pmcid: 4437632 doi: 10.1126/science.aaa3650
Freischmidt, A. et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18, 631–636 (2015).
pubmed: 25803835 doi: 10.1038/nn.4000
Kenna, K. P. et al. NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nat. Genet. 48, 1037–1042 (2016).
pubmed: 27455347 pmcid: 5560030 doi: 10.1038/ng.3626
Brenner, D. et al. NEK1 mutations in familial amyotrophic lateral sclerosis. Brain 139, e28 (2016).
pubmed: 26945885 doi: 10.1093/brain/aww033
Majounie, E. et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 11, 323–330 (2012).
pubmed: 22406228 pmcid: 3322422 doi: 10.1016/S1474-4422(12)70043-1
Nicolas, A. et al. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 97, 1268–1283 (2018).
pubmed: 29566793 pmcid: 5867896 doi: 10.1016/j.neuron.2018.02.027
van Es, M. A. et al. Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat. Genet. 41, 1083–1087 (2009).
pubmed: 19734901 doi: 10.1038/ng.442
Laaksovirta, H. et al. Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study. Lancet Neurol. 9, 978–985 (2010).
pubmed: 20801718 pmcid: 2965392 doi: 10.1016/S1474-4422(10)70184-8
van Rheenen, W. et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat. Genet. 48, 1043–1048 (2016).
pubmed: 27455348 pmcid: 5556360 doi: 10.1038/ng.3622
Benyamin, B. et al. Cross-ethnic meta-analysis identifies association of the GPX3–TNIP1 locus with amyotrophic lateral sclerosis. Nat. Commun. 8, 611 (2017).
pubmed: 28931804 pmcid: 5606989 doi: 10.1038/s41467-017-00471-1
Nakamura, R. et al. A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated with amyotrophic lateral sclerosis. Commun. Biol. 3, 526 (2020).
pubmed: 32968195 pmcid: 7511394 doi: 10.1038/s42003-020-01251-2
DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).
pubmed: 21944778 pmcid: 3202986 doi: 10.1016/j.neuron.2011.09.011
Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS–FTD. Neuron 72, 257–268 (2011).
pubmed: 21944779 pmcid: 3200438 doi: 10.1016/j.neuron.2011.09.010
Diekstra, F. P. et al. C9orf72 and UNC13A are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: a genome-wide meta-analysis. Ann. Neurol. 76, 120–133 (2014).
pubmed: 24931836 pmcid: 4137231 doi: 10.1002/ana.24198
Chen, J. A. et al. Joint genome-wide association study of progressive supranuclear palsy identifies novel susceptibility loci and genetic correlation to neurodegenerative diseases. Mol. Neurodegener. 13, 41 (2018).
pubmed: 30089514 pmcid: 6083608 doi: 10.1186/s13024-018-0270-8
McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
pubmed: 27548312 pmcid: 5388176 doi: 10.1038/ng.3643
Iacoangeli, A. et al. Genome-wide meta-analysis finds the ACSL5–ZDHHC6 locus is associated with ALS and links weight loss to the disease genetics. Cell Rep. 33, 108323 (2020).
pubmed: 33113361 pmcid: 7610013 doi: 10.1016/j.celrep.2020.108323
Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).
pubmed: 34475573 pmcid: 8432599 doi: 10.1038/s41588-021-00913-z
de Klein, N. et al. Brain expression quantitative trait locus and network analysis reveals downstream effects and putative drivers for brain-related diseases. Preprint at bioRxiv https://doi.org/10.1101/2021.03.01.433439 (2021).
Pidsley, R. et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 17, 208 (2016).
pubmed: 27717381 pmcid: 5055731 doi: 10.1186/s13059-016-1066-1
Shireby, G. L. et al. Recalibrating the epigenetic clock: implications for assessing biological age in the human cortex. Brain 143, 3763–3775 (2020).
pubmed: 33300551 pmcid: 7805794 doi: 10.1093/brain/awaa334
Hannon, E. et al. An integrated genetic–epigenetic analysis of schizophrenia: evidence for co-localization of genetic associations and differential DNA methylation. Genome Biol. 17, 176 (2016).
pubmed: 27572077 pmcid: 5004279 doi: 10.1186/s13059-016-1041-x
Fang, X. et al. The NEK1 interactor, C21ORF2, is required for efficient DNA damage repair. Acta Biochim. Biophys. Sin. 47, 834–841 (2015).
pubmed: 26290490 pmcid: 4581587 doi: 10.1093/abbs/gmv076
Brown, A.-L. et al. Common ALS/FTD risk variants in UNC13A exacerbate its cryptic splicing and loss upon TDP-43 mislocalization. Preprint at bioRxiv https://doi.org/10.1101/2021.04.02.438170 (2021).
Ma, X. R. et al. TDP-43 represses cryptic exon inclusion in FTD/ALS gene UNC13A. Preprint at bioRxiv https://doi.org/10.1101/2021.04.02.438213 (2021).
Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).
pubmed: 30617256 pmcid: 6836675 doi: 10.1038/s41588-018-0311-9
Leeuw, C. A., de Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).
pubmed: 25885710 pmcid: 4401657 doi: 10.1371/journal.pcbi.1004219
Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
pubmed: 29184056 pmcid: 5705698 doi: 10.1038/s41467-017-01261-5
Watanabe, K., Umićević Mirkov, M., de Leeuw, C. A., van den Heuvel, M. P. & Posthuma, D. Genetic mapping of cell type specificity for complex traits. Nat. Commun. 10, 3222 (2019).
pubmed: 31324783 pmcid: 6642112 doi: 10.1038/s41467-019-11181-1
Deelen, P. et al. Improving the diagnostic yield of exome-sequencing by predicting gene–phenotype associations using large-scale gene expression analysis. Nat. Commun. 10, 2837 (2019).
pubmed: 31253775 pmcid: 6599066 doi: 10.1038/s41467-019-10649-4
Hop, P. J. et al. Genome-wide study of DNA methylation in amyotrophic lateral sclerosis identifies differentially methylated loci and implicates metabolic, inflammatory and cholesterol pathways. Preprint at medRxiv https://doi.org/10.1101/2021.03.12.21253115 (2021).
Davies, N. M., Holmes, M. V. & Smith, G. D. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362, k601 (2018).
pubmed: 30002074 pmcid: 6041728 doi: 10.1136/bmj.k601
Bowden, J. et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the radial plot and radial regression. Int. J. Epidemiol. 47, 1264–1278 (2018).
pubmed: 29961852 pmcid: 6124632 doi: 10.1093/ije/dyy101
Munafò, M. R., Tilling, K., Taylor, A. E., Evans, D. M. & Davey Smith, G. Collider scope: when selection bias can substantially influence observed associations. Int. J. Epidemiol. 47, 226–235 (2018).
pubmed: 29040562 doi: 10.1093/ije/dyx206
Watanabe, Y. et al. An amyotrophic lateral sclerosis-associated mutant of C21ORF2 is stabilized by NEK1-mediated hyperphosphorylation and the inability to bind FBXO3. iScience 23, 101491 (2020).
pubmed: 32891887 pmcid: 7481237 doi: 10.1016/j.isci.2020.101491
Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).
pubmed: 25282103 pmcid: 4250049 doi: 10.1038/ng.3097
Luo, Y. et al. Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nat. Genet. 49, 186–192 (2017).
pubmed: 28067910 pmcid: 5289625 doi: 10.1038/ng.3761
Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40, 189–197 (2008).
pubmed: 18193044 pmcid: 2682493 doi: 10.1038/ng.75
Saez-Atienzar, S. et al. Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types. Sci. Adv. 7, eabd9036 (2021).
pubmed: 33523907 pmcid: 7810371 doi: 10.1126/sciadv.abd9036
Yamanaka, K. et al. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc. Natl Acad. Sci. USA 105, 7594–7599 (2008).
pubmed: 18492803 pmcid: 2396671 doi: 10.1073/pnas.0802556105
Ralph, G. S. et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat. Med. 11, 429–433 (2005).
pubmed: 15768029 doi: 10.1038/nm1205
Blokhuis, A. M., Groen, E. J. N., Koppers, M., van den Berg, L. H. & Pasterkamp, R. J. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol. 125, 777–794 (2013).
pubmed: 23673820 pmcid: 3661910 doi: 10.1007/s00401-013-1125-6
Seelen, M. et al. Prior medical conditions and the risk of amyotrophic lateral sclerosis. J. Neurol. 261, 1949–1956 (2014).
pubmed: 25059395 doi: 10.1007/s00415-014-7445-1
Bandres-Ciga, S. et al. Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Ann. Neurol. 85, 470–481 (2019).
pubmed: 30723964 pmcid: 6450729 doi: 10.1002/ana.25431
Armon, C. Smoking is a cause of ALS. High LDL-cholesterol levels? Unsure. Ann. Neurol. 85, 465–469 (2019).
pubmed: 30875450 doi: 10.1002/ana.25468
Turner, M. R., Wotton, C., Talbot, K. & Goldacre, M. J. Cardiovascular fitness as a risk factor for amyotrophic lateral sclerosis: indirect evidence from record linkage study. J. Neurol. Neurosurg. Psychiatry 83, 395–398 (2012).
pubmed: 22072701 doi: 10.1136/jnnp-2011-301161
Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).
pubmed: 19339967 pmcid: 2676208 doi: 10.1038/nature07976
Koga, H., Kaushik, S. & Cuervo, A. M. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 24, 3052–3065 (2010).
pubmed: 20375270 pmcid: 2909278 doi: 10.1096/fj.09-144519
Fraldi, A. et al. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J. 29, 3607–3620 (2010).
pubmed: 20871593 pmcid: 2982760 doi: 10.1038/emboj.2010.237
Barbero-Camps, E. et al. Cholesterol impairs autophagy-mediated clearance of amyloid β while promoting its secretion. Autophagy 14, 1129–1154 (2018).
pubmed: 29862881 pmcid: 6103708 doi: 10.1080/15548627.2018.1438807
Brooks, B. R., Miller, R. G., Swash, M. & Munsat, T. L. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 1, 293–299 (2000).
Zhou, W. et al. Efficiently controlling for case–control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).
pubmed: 30104761 pmcid: 6119127 doi: 10.1038/s41588-018-0184-y
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382 pmcid: 2922887 doi: 10.1093/bioinformatics/btq340
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630 pmcid: 4495769 doi: 10.1038/ng.3211
Brown, B. C. et al. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet. 99, 76–88 (2016).
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
pubmed: 22426310 pmcid: 3593158 doi: 10.1038/ng.2213
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468 pmcid: 3014363 doi: 10.1016/j.ajhg.2010.11.011
Project MinE ALS Sequencing Consortium. Project MinE: study design and pilot analyses of a large-scale whole-genome sequencing study in amyotrophic lateral sclerosis. Eur. J. Hum. Genet. 26, 1537–1546 (2018).
Spek, R. A. Avander. et al. The project MinE databrowser: bringing large-scale whole-genome sequencing in ALS to researchers and the public. Amyotroph. Lateral Scler. Frontotemporal Degener. 20, 432–440 (2019).
pubmed: 31280677 doi: 10.1080/21678421.2019.1606244
Genovese, G. et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat. Neurosci. 19, 1433–1441 (2016).
pubmed: 27694994 pmcid: 5104192 doi: 10.1038/nn.4402
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).
pubmed: 22728672 pmcid: 3679285 doi: 10.4161/fly.19695
Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).
pubmed: 26633127 doi: 10.1038/nprot.2015.123
Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).
pubmed: 20354512 pmcid: 2855889 doi: 10.1038/nmeth0410-248
Chun, S. & Fay, J. C. Identification of deleterious mutations within three human genomes. Genome Res. 19, 1553–1561 (2009).
pubmed: 19602639 pmcid: 2752137 doi: 10.1101/gr.092619.109
Schwarz, J. M., Cooper, D. N., Schuelke, M. & Seelow, D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods 11, 361–362 (2014).
pubmed: 24681721 doi: 10.1038/nmeth.2890
Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 39, e118 (2011).
pubmed: 21727090 pmcid: 3177186 doi: 10.1093/nar/gkr407
Choi, Y. & Chan, A. P. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31, 2745–2747 (2015).
pubmed: 25851949 pmcid: 4528627 doi: 10.1093/bioinformatics/btv195
Dolzhenko, E. et al. Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res. 27, 1895–1903 (2017).
pubmed: 28887402 pmcid: 5668946 doi: 10.1101/gr.225672.117
Dolzhenko, E. et al. ExpansionHunter Denovo: a computational method for locating known and novel repeat expansions in short-read sequencing data. Genome Biol. 21, 102 (2020).
pubmed: 32345345 pmcid: 7187524 doi: 10.1186/s13059-020-02017-z
Mousavi, N., Shleizer-Burko, S., Yanicky, R. & Gymrek, M. Profiling the genome-wide landscape of tandem repeat expansions. Nucleic Acids Res. 47, e90 (2019).
pubmed: 31194863 pmcid: 6735967 doi: 10.1093/nar/gkz501
Wu, Y. et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat. Commun. 9, 918 (2018).
pubmed: 29500431 pmcid: 5834629 doi: 10.1038/s41467-018-03371-0
Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).
pubmed: 27019110 doi: 10.1038/ng.3538
Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).
pubmed: 29739930 pmcid: 5940825 doi: 10.1038/s41467-018-03621-1
Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).
pubmed: 26854917 pmcid: 4767558 doi: 10.1038/ng.3506
Hannon, E. et al. Leveraging DNA-methylation quantitative-trait loci to characterize the relationship between methylomic variation, gene expression, and complex traits. Am. J. Hum. Genet. 103, 654–665 (2018).
pubmed: 30401456 pmcid: 6217758 doi: 10.1016/j.ajhg.2018.09.007
Hop, P. J. et al. Genome-wide identification of genes regulating DNA methylation using genetic anchors for causal inference. Genome Biol. 21, 220 (2020).
pubmed: 32859263 pmcid: 7453518 doi: 10.1186/s13059-020-02114-z
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
pubmed: 20436461 pmcid: 4840234 doi: 10.1038/nbt.1630
Wei, T. et al. CpGtools: a Python package for DNA methylation analysis. Bioinformatics 37, 1598–1599 (2021).
pubmed: 31808791 doi: 10.1093/bioinformatics/btz916
Zeng, J. et al. Signatures of negative selection in the genetic architecture of human complex traits. Nat. Genet. 50, 746–753 (2018).
pubmed: 29662166 doi: 10.1038/s41588-018-0101-4
Lloyd-Jones, L. R. et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nat. Commun. 10, 5086 (2019).
pubmed: 31704910 pmcid: 6841727 doi: 10.1038/s41467-019-12653-0
Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).
pubmed: 30820047 pmcid: 6463297 doi: 10.1038/s41588-019-0358-2
Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).
pubmed: 31701892 pmcid: 8422160 doi: 10.1016/S1474-4422(19)30320-5
Ferrari, R., Hernandez, D. G., Nalls, M. A. & Rohrer, J. D. Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol. 13, 686–699 (2014).
Kouri, N. et al. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nat. Commun. 6, 7247 (2015).
pubmed: 26077951 doi: 10.1038/ncomms8247
Marioni, R. E. et al. GWAS on family history of Alzheimer’s disease. Transl. Psychiatry 8, 99 (2018).
pubmed: 29777097 pmcid: 5959890 doi: 10.1038/s41398-018-0150-6
International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019).
pmcid: 7241648 doi: 10.1126/science.aav7188
Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).
pubmed: 29531354 pmcid: 5968830 doi: 10.1038/s41588-018-0058-3
Woo, D. et al. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am. J. Hum. Genet. 94, 511–521 (2014).
pubmed: 24656865 pmcid: 3980413 doi: 10.1016/j.ajhg.2014.02.012
Bakker, M. K. et al. Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors. Nat. Genet. 52, 1303–1313 (2020).
pubmed: 33199917 pmcid: 7116530 doi: 10.1038/s41588-020-00725-7
Watson, H. J. et al. Genome-wide association study identifies eight risk loci and implicates metabo–psychiatric origins for anorexia nervosa. Nat. Genet. 51, 1207–1214 (2019).
pubmed: 31308545 pmcid: 6779477 doi: 10.1038/s41588-019-0439-2
International Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics Association Studies (OCGAS). Revealing the complex genetic architecture of obsessive–compulsive disorder using meta-analysis. Mol. Psychiatry 23, 1181–1188 (2018).
Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol. Psychiatry 21, 1391–1399 (2016).
pubmed: 26754954 pmcid: 4940340 doi: 10.1038/mp.2015.197
Nievergelt, C. M. et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat. Commun. 10, 4558 (2019).
pubmed: 31594949 pmcid: 6783435 doi: 10.1038/s41467-019-12576-w
Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).
pubmed: 29700475 pmcid: 5934326 doi: 10.1038/s41588-018-0090-3
Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).
pubmed: 31043756 pmcid: 6956732 doi: 10.1038/s41588-019-0397-8
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).
Yu, D. et al. Interrogating the genetic determinants of Tourette’s syndrome and other tic disorders through genome-wide association studies. Am. J. Psychiatry 176, 217–227 (2019).
pubmed: 30818990 pmcid: 6677250 doi: 10.1176/appi.ajp.2018.18070857
Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).
pubmed: 30804558 pmcid: 6454898 doi: 10.1038/s41588-019-0344-8
Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).
pubmed: 30478444 doi: 10.1038/s41588-018-0269-7
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
pubmed: 24830394 pmcid: 4022491 doi: 10.1371/journal.pgen.1004383
Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).
pubmed: 26060301 pmcid: 4466750 doi: 10.1073/pnas.1507125112
Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).
pubmed: 31435019 pmcid: 6919571 doi: 10.1038/s41586-019-1506-7
Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030 (2018).
pubmed: 30096299 pmcid: 6447408 doi: 10.1016/j.cell.2018.07.028
Lamparter, D., Marbach, D., Rueedi, R., Kutalik, Z. & Bergmann, S. Fast and rigorous computation of gene and pathway scores from SNP-based summary statistics. PLoS Comput. Biol. 12, e1004714 (2016).
pubmed: 26808494 pmcid: 4726509 doi: 10.1371/journal.pcbi.1004714
1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).
pubmed: 30124842 pmcid: 6488973 doi: 10.1093/hmg/ddy271
Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).
pubmed: 30038396 pmcid: 6393768 doi: 10.1038/s41588-018-0147-3
Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).
pubmed: 30643251 pmcid: 6358542 doi: 10.1038/s41588-018-0307-5
Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
pubmed: 25826379 pmcid: 4380465 doi: 10.1371/journal.pmed.1001779
van der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122, 433–443 (2018).
pubmed: 29212778 pmcid: 5805277 doi: 10.1161/CIRCRESAHA.117.312086
Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).
pubmed: 30224653 pmcid: 6284793 doi: 10.1038/s41588-018-0205-x
Vuckovic, D. et al. The polygenic and monogenic basis of blood traits and diseases. Cell 182, 1214–1231 (2020).
pubmed: 32888494 pmcid: 7482360 doi: 10.1016/j.cell.2020.08.008
Ligthart, S. et al. Genome analyses of >200,000 individuals identify 58 loci for chronic inflammation and highlight pathways that link inflammation and complex disorders. Am. J. Hum. Genet. 103, 691–706 (2018).
pubmed: 30388399 pmcid: 6218410 doi: 10.1016/j.ajhg.2018.09.009
Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
pubmed: 24097068 pmcid: 3838666 doi: 10.1038/ng.2797
Zeng, P., Wang, T., Zheng, J. & Zhou, X. Causal association of type 2 diabetes with amyotrophic lateral sclerosis: new evidence from Mendelian randomization using GWAS summary statistics. BMC Med. 17, 225 (2019).
pubmed: 31796040 pmcid: 6892209 doi: 10.1186/s12916-019-1448-9
Cragg, J. G. & Donald, S. G. Testing identifiability and specification in instrumental variable models. Econ. Theory 9, 222–240 (1993).
doi: 10.1017/S0266466600007519
Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).
Smith, G. D., Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98 (2014).
doi: 10.1093/hmg/ddu328
Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 13, e1007081 (2017).
pubmed: 29149188 pmcid: 5711033 doi: 10.1371/journal.pgen.1007081
Burgess, S. & Thompson, S. G. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 181, 251–260 (2015).
pubmed: 25632051 pmcid: 4325677 doi: 10.1093/aje/kwu283
Sanderson, E., Davey Smith, G., Windmeijer, F. & Bowden, J. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int. J. Epidemiol. 48, 713–727 (2019).
pubmed: 30535378 doi: 10.1093/ije/dyy262

Auteurs

Wouter van Rheenen (W)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands. w.vanrheenen-2@umcutrecht.nl.

Rick A A van der Spek (RAA)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Mark K Bakker (MK)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Joke J F A van Vugt (JJFA)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Paul J Hop (PJ)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Ramona A J Zwamborn (RAJ)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Niek de Klein (N)

Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.

Harm-Jan Westra (HJ)

Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.

Olivier B Bakker (OB)

Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.

Patrick Deelen (P)

Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.
Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Gemma Shireby (G)

University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK.

Eilis Hannon (E)

University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK.

Matthieu Moisse (M)

Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven, Belgium.
Department of Neurology, University Hospitals Leuven, Leuven, Belgium.

Denis Baird (D)

Translational Biology, Biogen, Boston, MA, USA.
MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, UK.

Restuadi Restuadi (R)

Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.

Egor Dolzhenko (E)

Illumina, San Diego, CA, USA.

Annelot M Dekker (AM)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Klara Gawor (K)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Henk-Jan Westeneng (HJ)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Gijs H P Tazelaar (GHP)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Kristel R van Eijk (KR)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Maarten Kooyman (M)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Ross P Byrne (RP)

Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.

Mark Doherty (M)

Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.

Mark Heverin (M)

Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Ahmad Al Khleifat (A)

Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Alfredo Iacoangeli (A)

Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
National Institute for Health Research Biomedical Research Centre and Dementia Unit, South London and Maudsley NHS Foundation Trust and King's College London, London, UK.

Aleksey Shatunov (A)

Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Nicola Ticozzi (N)

Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy.
Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy.

Johnathan Cooper-Knock (J)

Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.

Bradley N Smith (BN)

Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Marta Gromicho (M)

Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.

Siddharthan Chandran (S)

Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK.
UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.

Suvankar Pal (S)

Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK.
UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.

Karen E Morrison (KE)

School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.

Pamela J Shaw (PJ)

Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.

John Hardy (J)

Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK.

Richard W Orrell (RW)

Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK.

Michael Sendtner (M)

Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany.

Thomas Meyer (T)

Charité University Hospital, Humboldt University, Berlin, Germany.

Nazli Başak (N)

Koç University, School of Medicine, KUTTAM-NDAL, Istanbul, Turkey.

Anneke J van der Kooi (AJ)

Department of Neurology, Academic Medical Center, Amsterdam, the Netherlands.

Antonia Ratti (A)

Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy.
Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.

Isabella Fogh (I)

Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Cinzia Gellera (C)

Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy.

Giuseppe Lauria (G)

3rd Neurology Unit, Motor Neuron Diseases Center, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', MIlan, Italy.
Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.

Stefania Corti (S)

Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy.
Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.

Cristina Cereda (C)

Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy.

Daisy Sproviero (D)

Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy.

Sandra D'Alfonso (S)

Department of Health Sciences, University of Eastern Piedmont, Novara, Italy.

Gianni Sorarù (G)

Department of Neurosciences, University of Padova, Padova, Italy.

Gabriele Siciliano (G)

Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.

Massimiliano Filosto (M)

Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.

Alessandro Padovani (A)

Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.

Adriano Chiò (A)

'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy.
Neurologia 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy.

Andrea Calvo (A)

'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy.
Neurologia 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy.

Cristina Moglia (C)

'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy.
Neurologia 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy.

Maura Brunetti (M)

'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy.

Antonio Canosa (A)

'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy.
Neurologia 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy.

Maurizio Grassano (M)

'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy.

Ettore Beghi (E)

Laboratory of Neurological Diseases, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Elisabetta Pupillo (E)

Laboratory of Neurological Diseases, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Giancarlo Logroscino (G)

Department of Clinical Research in Neurology, University of Bari at 'Pia Fondazione Card G. Panico' Hospital, Bari, Italy.

Beatrice Nefussy (B)

Neuromuscular Diseases Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.

Alma Osmanovic (A)

Department of Neurology, Hannover Medical School, Hannover, Germany.
Essener Zentrum für Seltene Erkrankungen (EZSE), University Hospital Essen, Essen, Germany.

Angelica Nordin (A)

Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden.

Yossef Lerner (Y)

Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
Department of Neurology, the Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel.

Michal Zabari (M)

Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
Department of Neurology, the Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel.

Marc Gotkine (M)

Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
Department of Neurology, the Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel.

Robert H Baloh (RH)

Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Department of Neurology, Neuromuscular Division, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Shaughn Bell (S)

Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Department of Neurology, Neuromuscular Division, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Patrick Vourc'h (P)

Service de Biochimie et Biologie Moléculaire, CHU de Tours, Tours, France.
UMR 1253, Université de Tours, Inserm, Tours, France.

Philippe Corcia (P)

UMR 1253, Université de Tours, Inserm, Tours, France.
Centre de référence sur la SLA, CHU de Tours, Tours, France.

Philippe Couratier (P)

Centre de référence sur la SLA, CHRU de Limoges, Limoges, France.
UMR 1094, Université de Limoges, Inserm, Limoges, France.

Stéphanie Millecamps (S)

ICM, Institut du Cerveau, Inserm, CNRS, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France.

Vincent Meininger (V)

Hôpital des Peupliers, Ramsay Générale de Santé, Paris, France.

François Salachas (F)

ICM, Institut du Cerveau, Inserm, CNRS, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France.
Département de Neurologie, Centre de référence SLA Ile de France, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France.

Jesus S Mora Pardina (JS)

ALS Unit, Hospital San Rafael, Madrid, Spain.

Abdelilah Assialioui (A)

Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.

Ricardo Rojas-García (R)

MND Clinic, Neurology Department, Hospital de la Santa Creu i Sant Pau de Barcelona, Universitat Autonoma de Barcelona, Barcelona, Spain.

Patrick A Dion (PA)

Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.

Jay P Ross (JP)

Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
Department of Human Genetics, McGill University, Montreal, Quebec, Canada.

Albert C Ludolph (AC)

Department of Neurology, Ulm University, Ulm, Germany.

Jochen H Weishaupt (JH)

Division of Neurodegeneration, Department of Neurology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.

David Brenner (D)

Division of Neurodegeneration, Department of Neurology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.

Axel Freischmidt (A)

Department of Neurology, Ulm University, Ulm, Germany.
German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany.

Gilbert Bensimon (G)

Département de Pharmacologie Clinique, Hôpital de la Pitié-Salpêtrière, UPMC Pharmacologie, AP-HP, Paris, France.
Pharmacologie Sorbonne Université, Paris, France.
Institut du Cerveau, Paris Brain Institute ICM, Paris, France.
Laboratoire de Biostatistique, Epidémiologie Clinique, Santé Publique Innovation et Méthodologie (BESPIM), CHU-Nîmes, Nîmes, France.

Alexis Brice (A)

Sorbonne Université, Paris Brain Institute, APHP, INSERM, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France.

Alexandra Durr (A)

Sorbonne Université, Paris Brain Institute, APHP, INSERM, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France.

Christine A M Payan (CAM)

Département de Pharmacologie Clinique, Hôpital de la Pitié-Salpêtrière, UPMC Pharmacologie, AP-HP, Paris, France.

Safa Saker-Delye (S)

Genethon, CNRS UMR, Evry, France.

Nicholas W Wood (NW)

Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.

Simon Topp (S)

Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Rosa Rademakers (R)

Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, USA.

Lukas Tittmann (L)

Popgen Biobank and Institute of Epidemiology, Christian Albrechts-University Kiel, Kiel, Germany.

Wolfgang Lieb (W)

Popgen Biobank and Institute of Epidemiology, Christian Albrechts-University Kiel, Kiel, Germany.

Andre Franke (A)

Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.

Stephan Ripke (S)

Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany.

Alice Braun (A)

Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany.

Julia Kraft (J)

Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany.

David C Whiteman (DC)

Cancer Control Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.

Catherine M Olsen (CM)

Cancer Control Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.

Andre G Uitterlinden (AG)

Department of Internal Medicine, Genetics Laboratory, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands.
Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands.

Albert Hofman (A)

Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands.

Marcella Rietschel (M)

Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
Central Institute of Mental Health, Mannheim, Germany.

Sven Cichon (S)

Institute of Human Genetics, University of Bonn, Bonn, Germany.
Department of Genomics, Life and Brain Center, Bonn, Germany.
Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland.
Institute of Neuroscience and Medicine INM-1, Research Center Juelich, Juelich, Germany.

Markus M Nöthen (MM)

Institute of Human Genetics, University of Bonn, Bonn, Germany.
Department of Genomics, Life and Brain Center, Bonn, Germany.

Philippe Amouyel (P)

INSERM UMR1167-RID-AGE LabEx DISTALZ-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Centre Hospitalier of the University of Lille, Institut Pasteur de Lille, Lille, France.

Bryan J Traynor (BJ)

Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD, USA.
Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.

Andrew B Singleton (AB)

Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD, USA.

Miguel Mitne Neto (M)

Universidade de São Paulo, São Paulo, Brazil.

Ruben J Cauchi (RJ)

Centre for Molecular Medicine and Biobanking and Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.

Roel A Ophoff (RA)

University Medical Center Utrecht, Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, Utrecht, the Netherlands.
Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.

Martina Wiedau-Pazos (M)

Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Catherine Lomen-Hoerth (C)

Department of Neurology, University of California, San Francisco, CA, USA.

Vivianna M van Deerlin (VM)

Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.

Julian Grosskreutz (J)

Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
Precision Neurology Unit, Department of Neurology, University Hospital Schleswig-Holstein, University of Luebeck, Luebeck, Germany.

Annekathrin Roediger (A)

Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.

Nayana Gaur (N)

Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.

Alexander Jörk (A)

Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.

Tabea Barthel (T)

Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.

Erik Theele (E)

Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.

Benjamin Ilse (B)

Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.

Beatrice Stubendorff (B)

Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.

Otto W Witte (OW)

Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.

Robert Steinbach (R)

Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.

Christian A Hübner (CA)

Institute of Human Genetics, Jena University Hospital, Jena, Germany.

Caroline Graff (C)

Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.

Lev Brylev (L)

Department of Neurology, Bujanov Moscow Clinical Hospital, Moscow, Russia.
Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department, Moscow, Russia.
Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences, Moscow, Russia.

Vera Fominykh (V)

Department of Neurology, Bujanov Moscow Clinical Hospital, Moscow, Russia.
Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences, Moscow, Russia.

Vera Demeshonok (V)

ALS-Care Center, 'GAOORDI', Medical Clinic of the St. Petersburg, St. Petersburg, Russia.

Anastasia Ataulina (A)

Department of Neurology, Bujanov Moscow Clinical Hospital, Moscow, Russia.

Boris Rogelj (B)

Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
Biomedical Research Institute BRIS, Ljubljana, Slovenia.
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.

Blaž Koritnik (B)

Ljubljana ALS Centre, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia.

Janez Zidar (J)

Ljubljana ALS Centre, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia.

Metka Ravnik-Glavač (M)

Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.

Damjan Glavač (D)

Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.

Zorica Stević (Z)

Clinic of Neurology, Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia.

Vivian Drory (V)

Neuromuscular Diseases Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Monica Povedano (M)

Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.

Ian P Blair (IP)

Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.

Matthew C Kiernan (MC)

Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.

Beben Benyamin (B)

Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
Australian Centre for Precision Health and Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia.

Robert D Henderson (RD)

Centre for Clinical Research, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia.
Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.

Sarah Furlong (S)

Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.

Susan Mathers (S)

Calvary Health Care Bethlehem, Parkdale, Victoria, Australia.

Pamela A McCombe (PA)

Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.

Merrilee Needham (M)

Fiona Stanley Hospital, Perth, Western Australia, Australia.
Notre Dame University, Fremantle, Western Australia, Australia.
Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.

Shyuan T Ngo (ST)

Centre for Clinical Research, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia.
Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.

Garth A Nicholson (GA)

Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.
Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia.
Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales, Australia.

Roger Pamphlett (R)

Discipline of Pathology and Department of Neuropathology, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.

Dominic B Rowe (DB)

Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.

Frederik J Steyn (FJ)

Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
The School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.

Kelly L Williams (KL)

Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.

Karen A Mather (KA)

Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia.
Neuroscience Research Australia Institute, Randwick, New South Wales, Australia.

Perminder S Sachdev (PS)

Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia.
Neuropsychiatric Institute, the Prince of Wales Hospital, UNSW, Randwick, New South Wales, Australia.

Anjali K Henders (AK)

Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.

Leanne Wallace (L)

Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.

Mamede de Carvalho (M)

Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.

Susana Pinto (S)

Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.

Susanne Petri (S)

Department of Neurology, Hannover Medical School, Hannover, Germany.

Markus Weber (M)

Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland.

Guy A Rouleau (GA)

Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
Department of Human Genetics, McGill University, Montreal, Quebec, Canada.

Vincenzo Silani (V)

Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy.
Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy.

Charles J Curtis (CJ)

Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK.
NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK.

Gerome Breen (G)

Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK.
NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK.

Jonathan D Glass (JD)

Department Neurology, Emory University School of Medicine, Atlanta, GA, USA.

Robert H Brown (RH)

Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA.

John E Landers (JE)

Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA.

Christopher E Shaw (CE)

Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Peter M Andersen (PM)

Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden.

Ewout J N Groen (EJN)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Michael A van Es (MA)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

R Jeroen Pasterkamp (RJ)

Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Dongsheng Fan (D)

Department of Neurology, Third Hospital, Peking University, Beijing, China.

Fleur C Garton (FC)

Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.

Allan F McRae (AF)

Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.

George Davey Smith (G)

MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, UK.
Population Health Science, Bristol Medical School, Bristol, UK.

Tom R Gaunt (TR)

MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, UK.
Population Health Science, Bristol Medical School, Bristol, UK.

Jonathan Mill (J)

University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK.

Russell L McLaughlin (RL)

Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.

Orla Hardiman (O)

Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Kevin P Kenna (KP)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Naomi R Wray (NR)

Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.

Ellen Tsai (E)

Translational Biology, Biogen, Boston, MA, USA.

Heiko Runz (H)

Translational Biology, Biogen, Boston, MA, USA.

Lude Franke (L)

Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.

Ammar Al-Chalabi (A)

Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
King's College Hospital, London, UK.

Philip Van Damme (P)

Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven, Belgium.
Department of Neurology, University Hospitals Leuven, Leuven, Belgium.

Leonard H van den Berg (LH)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Jan H Veldink (JH)

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands. j.h.veldink@umcutrecht.nl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH