T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
17 02 2022
Historique:
received: 26 02 2021
accepted: 26 01 2022
entrez: 18 2 2022
pubmed: 19 2 2022
medline: 4 3 2022
Statut: epublish

Résumé

Despite recent advances in cancer immunotherapy, certain tumor types, such as Glioblastomas, are highly resistant due to their tumor microenvironment disabling the anti-tumor immune response. Here we show, by applying an in-silico multidimensional model integrating spatially resolved and single-cell gene expression data of 45,615 immune cells from 12 tumor samples, that a subset of Interleukin-10-releasing HMOX1

Identifiants

pubmed: 35177622
doi: 10.1038/s41467-022-28523-1
pii: 10.1038/s41467-022-28523-1
pmc: PMC8854421
doi:

Substances chimiques

IL10 protein, human 0
Janus Kinase Inhibitors 0
STAT Transcription Factors 0
Interleukin-10 130068-27-8
HMOX1 protein, human EC 1.14.14.18
Heme Oxygenase-1 EC 1.14.14.18
Janus Kinases EC 2.7.10.2

Types de publication

Journal Article Observational Study Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

925

Informations de copyright

© 2022. The Author(s).

Références

Darmanis, S. et al. Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep. 21, 1399–1410 (2017).
pubmed: 29091775 pmcid: 5810554 doi: 10.1016/j.celrep.2017.10.030
Woroniecka, K. et al. T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin. Cancer Res. 24, 4175–4186 (2018).
pubmed: 29437767 pmcid: 6081269 doi: 10.1158/1078-0432.CCR-17-1846
Chen, Z. & Hambardzumyan, D. Immune microenvironment in glioblastoma subtypes. Front. Immunol. 9, 1004 (2018).
pubmed: 29867979 pmcid: 5951930 doi: 10.3389/fimmu.2018.01004
Sankowski, R. et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat. Neurosci. 22, 2098–2110 (2019).
pubmed: 31740814 doi: 10.1038/s41593-019-0532-y
Hara, T. et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 39, 779–792.e11 (2021).
pubmed: 34087162 doi: 10.1016/j.ccell.2021.05.002
Gangoso, E. et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell 184, 2454–2470.e26 (2021).
pubmed: 33857425 pmcid: 8099351 doi: 10.1016/j.cell.2021.03.023
Zhang, L. et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268–272 (2018).
pubmed: 30479382 doi: 10.1038/s41586-018-0694-x
Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356.e16 (2017).
pubmed: 28622514 doi: 10.1016/j.cell.2017.05.035
Baitsch, L. et al. Exhaustion of tumor-specific CD8
pubmed: 21555851 pmcid: 3104769 doi: 10.1172/JCI46102
Singer, M. et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 166, 1500–1511.e9 (2016).
pubmed: 27610572 pmcid: 5019125 doi: 10.1016/j.cell.2016.08.052
Anderson, A. C., Joller, N. & Kuchroo, V. K. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016).
pubmed: 27192565 pmcid: 4942846 doi: 10.1016/j.immuni.2016.05.001
Sawant, D. V. et al. Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T cell exhaustion. Nat. Immunol. 20, 724–735 (2019).
pubmed: 30936494 pmcid: 6531353 doi: 10.1038/s41590-019-0346-9
Jiang, Y., Li, Y. & Zhu, B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 6, e1792 (2015).
pubmed: 26086965 pmcid: 4669840 doi: 10.1038/cddis.2015.162
Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).
pubmed: 27501248 pmcid: 5297183 doi: 10.1038/nature19330
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).
pubmed: 27124452 pmcid: 4944528 doi: 10.1126/science.aad0501
Platten, M., Ochs, K., Lemke, D., Opitz, C. & Wick, W. Microenvironmental clues for glioma immunotherapy. Curr. Neurol. Neurosci. Rep. 14, 440 (2014).
pubmed: 24604058 doi: 10.1007/s11910-014-0440-1
Filley, A. C., Henriquez, M. & Dey, M. Recurrent glioma clinical trial, CheckMate-143: the game is not over yet. Oncotarget 8, 91779–91794 (2017).
pubmed: 29207684 pmcid: 5710964 doi: 10.18632/oncotarget.21586
Weller, M. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 18, 1373–1385 (2017).
pubmed: 28844499 doi: 10.1016/S1470-2045(17)30517-X
Henrik Heiland, D. et al. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat. Commun. 10, 2541 (2019).
pubmed: 31186414 pmcid: 6559986 doi: 10.1038/s41467-019-10493-6
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
Mathewson, N. D. et al. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell 184, 1281–1298.e26 (2021).
pubmed: 33592174 pmcid: 7935772 doi: 10.1016/j.cell.2021.01.022
Pombo Antunes, A. R. et al. Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. Elife 9, e52176 (2020).
Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).
pubmed: 24925914 pmcid: 4123637 doi: 10.1126/science.1254257
Miragaia, R. J. et al. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50, 493–504.e7 (2019).
pubmed: 30737144 pmcid: 6382439 doi: 10.1016/j.immuni.2019.01.001
Miggelbrink, A. M. et al. CD4 T-cell exhaustion: does it exist and what are its roles in cancer? Clin. Cancer Res. 27, 5742–5752 (2021).
Cho, J.-H. et al. Unique features of naive CD8+ T cell activation by IL-2. J. Immunol. 191, 5559–5573 (2013).
pubmed: 24166977 doi: 10.4049/jimmunol.1302293
Mould, A. W., Morgan, M. A. J., Nelson, A. C., Bikoff, E. K. & Robertson, E. J. Blimp1/Prdm1 functions in opposition to Irf1 to maintain neonatal tolerance during postnatal intestinal maturation. PLoS Genet. 11, e1005375 (2015).
pubmed: 26158850 pmcid: 4497732 doi: 10.1371/journal.pgen.1005375
Kamimoto, K., Hoffmann, C. M. & Morris, S. A. CellOracle: Dissecting cell identity via network inference and in silico gene perturbation. Preprint at bioRxiv https://doi.org/10.1101/2020.02.17.947416 (2020).
Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849.e21 (2019).
pubmed: 31327527 pmcid: 6703186 doi: 10.1016/j.cell.2019.06.024
Ravi, V. M. et al. Spatiotemporal heterogeneity of glioblastoma is dictated by microenvironmental interference. Preprint at bioRxiv https://doi.org/10.1101/2021.02.16.431475 (2021).
Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49, e50 (2021).
pubmed: 33544846 pmcid: 8136778 doi: 10.1093/nar/gkab043
Naito, Y., Takagi, T. & Higashimura, Y. Heme oxygenase-1 and anti-inflammatory M2 macrophages. Arch. Biochem. Biophys. 564, 83–88 (2014).
pubmed: 25241054 doi: 10.1016/j.abb.2014.09.005
Sebastián, V. P. et al. Heme Oxygenase-1 as a Modulator of Intestinal Inflammation Development and Progression. Front. Immunol. 9, 1956 (2018).
pubmed: 30258436 pmcid: 6143658 doi: 10.3389/fimmu.2018.01956
Kaiser, S. et al. Neuroprotection after hemorrhagic stroke depends on cerebral heme oxygenase-1. Antioxidants 8, 496 (2019).
Woo, J.-I. et al. IL-10/HMOX1 signaling modulates cochlear inflammation via negative regulation of MCP-1/CCL2 expression in cochlear fibrocytes. J. Immunol. 194, 3953–3961 (2015).
pubmed: 25780042 doi: 10.4049/jimmunol.1402751
Giladi, A. et al. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat. Biotechnol. 38, 629–637 (2020).
pubmed: 32152598 doi: 10.1038/s41587-020-0442-2
Ravi, V. M. et al. Human organotypic brain slice culture: a novel framework for environmental research in neuro-oncology. Life Sci. Alliance 2, e201900305 (2019).
Kling, T. et al. Integrative modeling reveals annexin A2-mediated epigenetic control of mesenchymal glioblastoma. EBioMedicine 12, 72–85 (2016).
pubmed: 27667176 pmcid: 5078587 doi: 10.1016/j.ebiom.2016.08.050
Bell, K. F. et al. Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning. Proc. Natl Acad. Sci. USA 108, E1–E2 (2011).
pubmed: 21177433 doi: 10.1073/pnas.1015229108
Liao, W., Lin, J.-X. & Leonard, W. J. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr. Opin. Immunol. 23, 598–604 (2011).
pubmed: 21889323 pmcid: 3405730 doi: 10.1016/j.coi.2011.08.003
Venteicher, A. S. et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355, eaai8478 (2017).
Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313 (2016).
pubmed: 27806376 pmcid: 5465819 doi: 10.1038/nature20123
Blank, C. U. et al. Defining “T cell exhaustion”. Nat. Rev. Immunol. 19, 665–674 (2019).
pubmed: 31570879 pmcid: 7286441 doi: 10.1038/s41577-019-0221-9
Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).
pubmed: 21739672 doi: 10.1038/ni.2035
Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789.e18 (2019).
pubmed: 30595452 doi: 10.1016/j.cell.2018.11.043
Woroniecka, K. I., Rhodin, K. E., Chongsathidkiet, P., Keith, K. A. & Fecci, P. E. T-cell dysfunction in glioblastoma: applying a new framework. Clin. Cancer Res. 24, 3792–3802 (2018).
pubmed: 29593027 pmcid: 6095741 doi: 10.1158/1078-0432.CCR-18-0047
Winkler, F. & Bengsch, B. Use of mass cytometry to profile human T cell exhaustion. Front. Immunol. 10, 3039 (2019).
pubmed: 32038613 doi: 10.3389/fimmu.2019.03039
Wurm, J. et al. Astrogliosis releases pro-oncogenic chitinase 3-like 1 causing MAPK signaling in glioblastoma. Cancers 11, 1437 (2019).
Priego, N. et al. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat. Med. 24, 1024–1035 (2018).
pubmed: 29892069 doi: 10.1038/s41591-018-0044-4
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242 pmcid: 6137996 doi: 10.1093/bioinformatics/bty191
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Parker, H. S., Fertig, E. J., Jaffe, A. E. & Storey, J. D. Package “sva.” (2014).
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
pubmed: 22455463 pmcid: 3339379 doi: 10.1089/omi.2011.0118
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Hahsler, M., Piekenbrock, M. & Doran, D. dbscan: fast density-based clustering with R. J. Stat. Softw. 91, 1–30 (2019).
Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny (Chapman and Hall/CRC, 2020).
Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Single-cell RNA-seq denoising using a deep count autoencoder. Nat. Commun. 10, 390 (2019).
pubmed: 30674886 pmcid: 6344535 doi: 10.1038/s41467-018-07931-2
Bååth, R. Bayesian first aid: a package that implements Bayesian alternatives to the classical*. Test functions in R. Proceedings of UseR (2014).
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
pubmed: 30089906 pmcid: 6130801 doi: 10.1038/s41586-018-0414-6
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).
pubmed: 32747759 doi: 10.1038/s41587-020-0591-3
Lange, M., Bergen, V., Klein, M. et al. CellRank for directed single-cell fate mapping. Nat Methods. https://doi.org/10.1038/s41592-021-01346-6 (2022).
Kueckelhaus, J. et al. Inferring spatially transient gene expression pattern from spatial transcriptomic studies. Preprint at bioRxiv https://doi.org/10.1101/2020.10.20.346544 (2020).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 14, 7 (2013).
doi: 10.1186/1471-2105-14-7
Zhang, Z. et al. SCINA: a semi-supervised subtyping algorithm of single cells and bulk samples. Genes 10, 531 (2019).
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).
pubmed: 30643263 pmcid: 6340744 doi: 10.1038/s41590-018-0276-y
Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).
pubmed: 31819264 doi: 10.1038/s41592-019-0667-5
Müller, S., Cho, A., Liu, S. J., Lim, D. A. & Diaz, A. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones. Bioinformatics 34, 3217–3219 (2018).
pubmed: 29897414 pmcid: 7190654 doi: 10.1093/bioinformatics/bty316
Maier, J. P. et al. Inhibition of metabotropic glutamate receptor III facilitates sensitization to alkylating chemotherapeutics in glioblastoma. Cell Death Dis. 12, 723 (2021).
pubmed: 34290229 pmcid: 8295384 doi: 10.1038/s41419-021-03937-9

Auteurs

Vidhya M Ravi (VM)

Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Neuroelectronic Systems, Medical Center-University of Freiburg, Freiburg, Germany.
Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.

Nicolas Neidert (N)

Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany.

Paulina Will (P)

Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Kevin Joseph (K)

Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Julian P Maier (JP)

Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Jan Kückelhaus (J)

Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Lea Vollmer (L)

Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Jonathan M Goeldner (JM)

Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Simon P Behringer (SP)

Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany.

Florian Scherer (F)

Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Department of Medicine I, Medical Center-University of Freiburg, Freiburg, Germany.

Melanie Boerries (M)

Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Freiburg, Germany.
Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany.
German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany.

Marie Follo (M)

Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Department of Medicine I, Medical Center-University of Freiburg, Freiburg, Germany.

Tobias Weiss (T)

Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.

Daniel Delev (D)

Department of Neurosurgery, RWTH University of Aachen, Aachen, Germany.
Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), Department of Neurosurgery, RWTH University of Aachen, Aachen, Germany.

Julius Kernbach (J)

Department of Neurosurgery, RWTH University of Aachen, Aachen, Germany.
Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), Department of Neurosurgery, RWTH University of Aachen, Aachen, Germany.

Pamela Franco (P)

Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany.

Nils Schallner (N)

Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Department of Anesthesiology and Critical Care Medicine, Medical Center-University of Freiburg, Freiburg, Germany.

Christine Dierks (C)

Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Department of Medicine I, Medical Center-University of Freiburg, Freiburg, Germany.

Maria Stella Carro (MS)

Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Ulrich G Hofmann (UG)

Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Neuroelectronic Systems, Medical Center-University of Freiburg, Freiburg, Germany.

Christian Fung (C)

Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Roman Sankowski (R)

Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany.

Marco Prinz (M)

Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany.
Signalling Research Centre BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
Center for NeuroModulation (NeuroModul), University of Freiburg, Freiburg, Germany.

Jürgen Beck (J)

Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Center for NeuroModulation (NeuroModul), University of Freiburg, Freiburg, Germany.

Henrike Salié (H)

Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Signalling Research Centre BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
Department of Medicine II: Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, Medical Center- University of Freiburg, Freiburg, Germany.

Bertram Bengsch (B)

Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Signalling Research Centre BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
Department of Medicine II: Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, Medical Center- University of Freiburg, Freiburg, Germany.

Oliver Schnell (O)

Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany.

Dieter Henrik Heiland (DH)

Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany. dieter.henrik.heiland@uniklinik-freiburg.de.
Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany. dieter.henrik.heiland@uniklinik-freiburg.de.
Faculty of Medicine, University of Freiburg, Freiburg, Germany. dieter.henrik.heiland@uniklinik-freiburg.de.
Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany. dieter.henrik.heiland@uniklinik-freiburg.de.
German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany. dieter.henrik.heiland@uniklinik-freiburg.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH