Formamide-based production of amines by metabolically engineering Corynebacterium glutamicum.


Journal

Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612

Informations de publication

Date de publication:
Jul 2023
Historique:
received: 11 04 2023
accepted: 12 05 2023
revised: 09 05 2023
medline: 3 7 2023
pubmed: 29 5 2023
entrez: 29 5 2023
Statut: ppublish

Résumé

Formamide is rarely used as nitrogen source by microorganisms. Therefore, formamide and formamidase have been used as protection system to allow for growth under non-sterile conditions and for non-sterile production of acetoin, a product lacking nitrogen. Here, we equipped Corynebacterium glutamicum, a renowned workhorse for industrial amino acid production for 60 years, with formamidase from Helicobacter pylori 26695, enabling growth with formamide as sole nitrogen source. Thereupon, the formamide/formamidase system was exploited for efficient formamide-based production of the nitrogenous compounds L-glutamate, L-lysine, N-methylphenylalanine, and dipicolinic acid by transfer of the formamide/formamidase system to established producer strains. Stable isotope labeling verified the incorporation of nitrogen from formamide into biomass and the representative product L-lysine. Moreover, we showed ammonium leakage during formamidase-based access of formamide to be exploitable to support growth of formamidase-deficient C. glutamicum in co-cultivation and demonstrated that efficient utilization of formamide as sole nitrogen source benefitted from overexpression of formate dehydrogenase. KEY POINTS: • C. glutamicum was engineered to access formamide. • Formamide-based production of nitrogenous compounds was established. • Nitrogen cross-feeding supported growth of a formamidase-negative strain.

Identifiants

pubmed: 37246985
doi: 10.1007/s00253-023-12592-3
pii: 10.1007/s00253-023-12592-3
pmc: PMC10313556
doi:

Substances chimiques

Lysine K3Z4F929H6
Amines 0
Amino Acids 0
Nitrogen N762921K75

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4245-4260

Subventions

Organisme : Bundesministerium für Bildung und Forschung
ID : ForceYield (031B0825C)
Organisme : Bundesministerium für Bildung und Forschung
ID : BMBF project ForceYield (031B0825B)

Informations de copyright

© 2023. The Author(s).

Références

Bipp H, Kieczka H (2011) Formamides. In: Wiley-VCH (eds) Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley-VCH, Weinheim, pp 720–741.  https://doi.org/10.1002/14356007.a12_001.pub2
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999
doi: 10.1006/abio.1976.9999 pubmed: 942051
Brown D, Hitchcock MJM, Katz E (1986) Purification and characterization of kynurenine formamidase activities from Streptomyces parvulus. Can J Microbiol 32:465–472. https://doi.org/10.1139/m86-086
doi: 10.1139/m86-086 pubmed: 2425918
Bury-Moné S, Thiberge J-M, Contreras M, Maitournam A, Labigne A, De Reuse H (2004) Responsiveness to acidity via metal ion regulators mediates virulence in the gastric pathogen Helicobacter pylori. Mol Microbiol 53:623–638. https://doi.org/10.1111/j.1365-2958.2004.04137.x
doi: 10.1111/j.1365-2958.2004.04137.x pubmed: 15228539
Calzadiaz-Ramirez L, Calvó-Tusell C, Stoffel GMM, Lindner SN, Osuna S, Erb TJ, Garcia-Borràs M, Bar-Even A, Acevedo-Rocha CG (2020) In vivo selection for formate dehydrogenases with high efficiency and specificity toward NADP
doi: 10.1021/acscatal.0c01487 pubmed: 32733773 pmcid: 7384739
Cetnar DP, Salis HM (2021) Systematic quantification of sequence and structural determinants controlling mRNA stability in bacterial operons. ACS Synth Biol 10:318–332. https://doi.org/10.1021/acssynbio.0c00471
doi: 10.1021/acssynbio.0c00471 pubmed: 33464822
Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014. https://doi.org/10.1038/nbt1325
doi: 10.1038/nbt1325 pubmed: 17704766
Cotton CA, Claassens NJ, Benito-Vaquerizo S, Bar-Even A (2020) Renewable methanol and formate as microbial feedstocks. Curr Opin Biotech 62:168–180. https://doi.org/10.1016/j.copbio.2019.10.002
doi: 10.1016/j.copbio.2019.10.002 pubmed: 31733545
Duca D, Rose DR, Glick BR (2014) Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Appl Environ Microb 80:4640–4649. https://doi.org/10.1128/AEM.00649-14
doi: 10.1128/AEM.00649-14
Dunn BE, Cohen H, Blaser MJ (1997) Helicobacter pylori. Clin Microbiol Rev 10:720–741. https://doi.org/10.1128/CMR.10.4.720
doi: 10.1128/CMR.10.4.720 pubmed: 9336670 pmcid: 172942
Egelkamp R, Schneider D, Hertel R, Daniel R (2017) Nitrile-degrading bacteria isolated from compost. Front Environ Sci 5:56. https://doi.org/10.3389/fenvs.2017.00056
Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum, 1st edn. CRC Press, Boca Raton
doi: 10.1201/9781420039696
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Lüdtke K-U, Sahm H (1994) Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828. https://doi.org/10.1099/13500872-140-8-1817
doi: 10.1099/13500872-140-8-1817 pubmed: 7522844
Fournand D, Arnaud A (2001) Aliphatic and enantioselective amidases: from hydrolysis to acyl transfer activity. J Appl Microbiol 91:381–393. https://doi.org/10.1046/j.1365-2672.2001.01378.x
doi: 10.1046/j.1365-2672.2001.01378.x pubmed: 11556902
Giavalisco P, Li Y, Matthes A, Eckhardt A, Hubberten H-M, Hesse H, Segu S, Hummel J, Köhl K, Willmitzer L (2011) Elemental formula annotation of polar and lipophilic metabolites using
doi: 10.1111/j.1365-313X.2011.04682.x pubmed: 21699588
Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318
doi: 10.1038/nmeth.1318 pubmed: 19363495
Gong J-S, Lu Z-M, Li H, Shi J-S, Zhou Z-M, Xu Z-H (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 11:142. https://doi.org/10.1186/1475-2859-11-142
doi: 10.1186/1475-2859-11-142 pubmed: 23106943 pmcid: 3537687
Guo Z-W, Ou X-Y, Liang S, Gao H-F, Zhang L-Y, Zong M-H, Lou W-Y (2020a) Recruiting a phosphite dehydrogenase/formamidase-driven antimicrobial contamination system in Bacillus subtilis for nonsterilized fermentation of acetoin. ACS Synth Biol 9:2537–2545. https://doi.org/10.1021/acssynbio.0c00312
doi: 10.1021/acssynbio.0c00312 pubmed: 32786356
Guo Z-W, Ou X-Y, Xu P, Gao H-F, Zhang L-Y, Zong M-H, Lou W-Y (2020b) Energy- and cost-effective non-sterilized fermentation of 2,3-butanediol by an engineered Klebsiella pneumoniae OU7 with an anti-microbial contamination system. Green Chem 22:8584–8593. https://doi.org/10.1039/D0GC03044A
doi: 10.1039/D0GC03044A
Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580. https://doi.org/10.1016/s0022-2836(83)80284-8
doi: 10.1016/s0022-2836(83)80284-8 pubmed: 6345791
Henke NA, Krahn I, Wendisch VF (2021) Improved plasmid-based inducible and constitutive gene expression in Corynebacterium glutamicum. Microorganisms 9:204. https://doi.org/10.3390/microorganisms9010204
doi: 10.3390/microorganisms9010204 pubmed: 33478126 pmcid: 7835838
Hu M, Liu F, Wang Z, Shao M, Xu M, Yang T, Zhang R, Zhang X, Rao Z (2022) Sustainable isomaltulose production in Corynebacterium glutamicum by engineering the thermostability of sucrose isomerase coupled with one-step simplified cell immobilization. Front Microbiol 13:979079. https://doi.org/10.3389/fmicb.2022.979079
doi: 10.3389/fmicb.2022.979079 pubmed: 36033839 pmcid: 9399683
Hung C-L, Liu J-H, Chiu W-C, Huang S-W, Hwang J-K, Wang W-C (2007) Crystal structure of Helicobacter pylori formamidase AmiF reveals a cysteine-glutamate-lysine catalytic triad. J Biol Chem 282:12220–12229. https://doi.org/10.1074/jbc.M609134200
doi: 10.1074/jbc.M609134200 pubmed: 17307742
Jakoby M, Nolden L, Meier-Wagner J, Krämer R, Burkovski A (2000) AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol 37:964–977. https://doi.org/10.1046/j.1365-2958.2000.02073.x
doi: 10.1046/j.1365-2958.2000.02073.x pubmed: 10972815
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25. https://doi.org/10.1016/S0168-1656(03)00154-8
doi: 10.1016/S0168-1656(03)00154-8 pubmed: 12948626
Kampen WH (2014) Nutritional requirements in fermentation processes. In: Vogel HC, Todaro CM (eds) Fermentation and biochemical engineering handbook, 3rd edn. William Andrew Publishing, Boston, pp 37–57.  https://doi.org/10.1016/B978-1-4557-2553-3.00004-0
Kennedy GL (2014) Formamide. In: Wexler P (ed) Encyclopedia of toxicology 3rd edn. Academic Press, Oxford, pp 657–658.  https://doi.org/10.1016/B978-0-12-386454-3.00023-3
Kerbs A, Mindt M, Schwardmann L, Wendisch VF (2021) Sustainable production of N-methylphenylalanine by reductive methylamination of phenylpyruvate using engineered Corynebacterium glutamicum. Microorganisms 9:824. https://doi.org/10.3390/microorganisms9040824
doi: 10.3390/microorganisms9040824 pubmed: 33924554 pmcid: 8070496
Klaffl S, Eikmanns BJ (2010) Genetic and functional analysis of the soluble oxaloacetate decarboxylase from Corynebacterium glutamicum. J Bacteriol 192:2604–2612. https://doi.org/10.1128/JB.01678-09
doi: 10.1128/JB.01678-09 pubmed: 20233922 pmcid: 2863558
Kleiner D (1981) The transport of NH
doi: 10.1016/0304-4173(81)90004-5 pubmed: 7030397
Lee SY, Choi J, Han K, Song JY (1999) Removal of endotoxin during purification of poly(3-hydroxybutyrate) from Gram-negative bacteria. Appl Environ Microb 65:2762–2764. https://doi.org/10.1128/AEM.65.6.2762-2764.1999
doi: 10.1128/AEM.65.6.2762-2764.1999
Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biot 69:1–8. https://doi.org/10.1007/s00253-005-0155-y
doi: 10.1007/s00253-005-0155-y
Liu J, Zhang Y, Feng K, Liu X, Li J, Li C, Zhang P, Yu Q, Liu J, Shen G, He L (2020) Amidase, a novel detoxifying enzyme, is involved in cyflumetofen resistance in Tetranychus cinnabarinus (Boisduval). Pestic Biochem Phys 163:31–38. https://doi.org/10.1016/j.pestbp.2019.10.001
doi: 10.1016/j.pestbp.2019.10.001
Liu X-X, Li Y, Bai Z-H (2021) Corynebacterium glutamicum as a robust microbial factory for production of value-added proteins and small molecules: fundamentals and applications. In Microbial cell factories engineering for production of biomolecules; Singh, V (Ed), Academic Press; 235–263
Lubitz D, Wendisch VF (2016) Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum. BMC Microbiol 16:235. https://doi.org/10.1186/s12866-016-0857-6
doi: 10.1186/s12866-016-0857-6 pubmed: 27717325 pmcid: 5055667
Mahenthiralingam E, Draper P, Davis EO, Colston MJ (1993) Cloning and sequencing of the gene which encodes the highly inducible acetamidase of Mycobacterium smegmatis. J Gen Microbiol 139:575–583. https://doi.org/10.1099/00221287-139-3-575
doi: 10.1099/00221287-139-3-575 pubmed: 8473863
Meng N, Shao J, Li H, Wang Y, Fu X, Liu C, Yu Y, Zhang B (2022) Electrosynthesis of formamide from methanol and ammonia under ambient conditions. Nat Commun 13:5452. https://doi.org/10.1038/s41467-022-33232-w
doi: 10.1038/s41467-022-33232-w pubmed: 36114196 pmcid: 9481544
Mindt M, Risse JM, Gruß H, Sewald N, Eikmanns BJ, Wendisch VF (2018) One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Sci Rep 8:12895. https://doi.org/10.1038/s41598-018-31309-5
doi: 10.1038/s41598-018-31309-5 pubmed: 30150644 pmcid: 6110843
Mindt M, Heuser M, Wendisch VF (2019) Xylose as preferred substrate for sarcosine production by recombinant Corynebacterium glutamicum. Bioresource Technol 281:135–142. https://doi.org/10.1016/j.biortech.2019.02.084
doi: 10.1016/j.biortech.2019.02.084
Müller T, Walter B, Wirtz A, Burkovski A (2006) Ammonium toxicity in bacteria. Curr Microbiol 52:400–406. https://doi.org/10.1007/s00284-005-0370-x
doi: 10.1007/s00284-005-0370-x pubmed: 16604417
Newton GL, Av-Gay Y, Fahey RC (2000) A novel mycothiol-dependent detoxification pathway in Mycobacteria involving mycothiol S-conjugate amidase. Biochemistry 39:10739–10746. https://doi.org/10.1021/bi000356n
doi: 10.1021/bi000356n pubmed: 10978158
Ou X-Y, Wu X-L, Peng F, Zeng Y-J, Li H-X, Xu P, Chen G, Guo Z-W, Yang J-G, Zong M-H, Lou W-Y (2019) Metabolic engineering of a robust Escherichia coli strain with a dual protection system. Biotechnol Bioeng 116:3333–3348. https://doi.org/10.1002/bit.27165
doi: 10.1002/bit.27165 pubmed: 31502661
Parish T, Mahenthiralingam E, Draper P, Davis EO, Colston EO (1997) Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology 143:2267–2276. https://doi.org/10.1099/00221287-143-7-2267
doi: 10.1099/00221287-143-7-2267 pubmed: 9245815
Pérez-García F, Peters-Wendisch P, Wendisch VF (2016) Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid. Appl Microbiol Biot 100:8075–8090. https://doi.org/10.1007/s00253-016-7682-6
doi: 10.1007/s00253-016-7682-6
Pérez-García F, Burgardt A, Kallman DR, Wendisch VF, Bar N (2021) Dynamic co-cultivation process of Corynebacterium glutamicum strains for the fermentative production of riboflavin. Fermentation 7:11. https://doi.org/10.3390/fermentation7010011
doi: 10.3390/fermentation7010011
Rath M, Salas J, Parhy B, Norton R, Menakuru H, Sommerhalter M, Hatlstad G, Kwon J, Allan D, Vance C, Uhde-Stone C (2010) Identification of genes induced in proteoid roots of white lupin under nitrogen and phosphorus deprivation, with functional characterization of a formamidase. Plant Soil 334:137–150. https://doi.org/10.1007/s11104-010-0373-7
doi: 10.1007/s11104-010-0373-7
Rehm N, Georgi T, Hiery E, Degner U, Schmiedl A, Burkovski A, Bott M (2010) L-Glutamine as a nitrogen source for Corynebacterium glutamicum: derepression of the AmtR regulon and implications for nitrogen sensing. Microbiology 156:3180–3193. https://doi.org/10.1099/mic.0.040667-0
doi: 10.1099/mic.0.040667-0 pubmed: 20656783
Reitzer LJ (1996) Sources of nitrogen and their utilization. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC, pp 380–390
Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microb 74:6216–6222. https://doi.org/10.1128/AEM.00963-08
doi: 10.1128/AEM.00963-08
Ryabchenko LE, Leonova TE, Shustikova TE, Gerasimova TV, Ivankova TA, Sidorenko KV, Yanenko AS (2020) Expression of the NADPH
doi: 10.1134/S0003683820080086
Saladino R, Crestini C, Pino S, Costanzo G, Di Mauro E (2012) Formamide and the origin of life. Phys Life Rev 9:84–104. https://doi.org/10.1016/j.plrev.2011.12.002
doi: 10.1016/j.plrev.2011.12.002 pubmed: 22196896
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press
Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biot 88:859–868. https://doi.org/10.1007/s00253-010-2778-x
doi: 10.1007/s00253-010-2778-x
Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154:191–198. https://doi.org/10.1016/j.jbiotec.2010.07.009
doi: 10.1016/j.jbiotec.2010.07.009 pubmed: 20638422
Schneider J, Eberhardt D, Wendisch VF (2012) Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biot 95:169–178. https://doi.org/10.1007/s00253-012-3956-9
doi: 10.1007/s00253-012-3956-9
Schwardmann LS, Dransfeld AK, Schäffer T, Wendisch VF (2022) Metabolic engineering of Corynebacterium glutamicum for sustainable production of the aromatic dicarboxylic acid dipicolinic acid. Microorganisms 10:730. https://doi.org/10.3390/microorganisms10040730
doi: 10.3390/microorganisms10040730 pubmed: 35456781 pmcid: 9024752
Seffernick JL, de Souza ML, Sadowsky MJ, Wackett LP (2001) Melamine deaminase and atrazine chlorohydrolase: 98 percent identical but functionally different. J Bacteriol 183:2405–2410. https://doi.org/10.1128/JB.183.8.2405-2410.2001
doi: 10.1128/JB.183.8.2405-2410.2001 pubmed: 11274097 pmcid: 95154
Selão TT, Włodarczyk A, Nixon PJ, Norling B (2019) Growth and selection of the cyanobacterium Synechococcus sp. PCC 7002 using alternative nitrogen and phosphorus sources. Metab Eng 54:255–263. https://doi.org/10.1016/j.ymben.2019.04.013
doi: 10.1016/j.ymben.2019.04.013 pubmed: 31063791
Sgobba E, Blöbaum L, Wendisch VF (2018a) Production of food and feed additives from non-food-competing feedstocks: valorizing n-acetylmuramic acid for amino acid and carotenoid fermentation with Corynebacterium glutamicum. Front Microbiol 9:2046. https://doi.org/10.3389/fmicb.2018.02046
doi: 10.3389/fmicb.2018.02046 pubmed: 30319554 pmcid: 6165865
Sgobba E, Stumpf AK, Vortmann M, Jagmann N, Krehenbrink M, Dirks-Hofmeister ME, Moerschbacher B, Philipp B, Wendisch VF (2018b) Synthetic Escherichia coli-Corynebacterium glutamicum consortia for L-lysine production from starch and sucrose. Bioresource Technol 260:302–310. https://doi.org/10.1016/j.biortech.2018.03.113
doi: 10.1016/j.biortech.2018.03.113
Shaw AJ, Lam FH, Hamilton M, Consiglio A, MacEwen K, Brevnova EE, Greenhagen E, LaTouf WG, South CR, van Dijken H, Stephanopoulos G (2016) Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science 353:583–586. https://doi.org/10.1126/science.aaf6159
doi: 10.1126/science.aaf6159 pubmed: 27493184
Siewe RM, Weil B, Krämer R (1995) Glutamine uptake by a sodium-dependent secondary transport system in Corynebacterium glutamicum. Arch Microbiol 164:98–103. https://doi.org/10.1007/BF02525314
doi: 10.1007/BF02525314
Siewe RM, Weil B, Burkovski A, Eggeling L, Krämer R, Jahns T (1998) Urea uptake and urease activity in Corynebacterium glutamicum. Arch Microbiol 169:411–416. https://doi.org/10.1007/s002030050591
doi: 10.1007/s002030050591 pubmed: 9560422
Skouloubris S, Labigne A, De Reuse H (2001) The AmiE aliphatic amidase and AmiF formamidase of Helicobacter pylori: natural evolution of two enzyme paralogues. Mol Microbiol 40:596–609. https://doi.org/10.1046/j.1365-2958.2001.02400.x
doi: 10.1046/j.1365-2958.2001.02400.x pubmed: 11359566
Soriano-Maldonado P, Martínez-Gómez AI, Andújar-Sánchez M, Neira JL, Clemente-Jiménez JM, Las Heras-Vázquez FJ, Rodríguez-Vico F, Martínez-Rodríguez S (2011) Biochemical and mutational studies of the Bacillus cereus CECT 5050T formamidase support the existence of a C-E-E-K tetrad in several members of the nitrilase superfamily. Appl Environ Microb 77:5761–5769. https://doi.org/10.1128/AEM.00312-11
doi: 10.1128/AEM.00312-11
Srivastava P, Deb JK (2005) Gene expression systems in corynebacteria. Protein Express Purif 40:221–229. https://doi.org/10.1016/j.pep.2004.06.017
doi: 10.1016/j.pep.2004.06.017
Thatcher RC, Weaver TL (1976) Carbon-nitrogen cycling through microbial formamide metabolism. Science 192:1234–1235. https://doi.org/10.1126/science.192.4245.1234
doi: 10.1126/science.192.4245.1234 pubmed: 17771758
Tsuge Y, Matsuzawa H (2021) Recent progress in production of amino acid-derived chemicals using Corynebacterium glutamicum. World J Microb Biotechnol 37:49. https://doi.org/10.1007/s11274-021-03007-4
doi: 10.1007/s11274-021-03007-4
Uhde A, Youn J-W, Maeda T, Clermont L, Matano C, Krämer R, Wendisch VF, Seibold GM, Marin K (2013) Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl Microbiol Biot 97:1679–1687. https://doi.org/10.1007/s00253-012-4313-8
doi: 10.1007/s00253-012-4313-8
Valappil SP, Boccaccini AR, Bucke C, Roy I (2007) Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie Van Leeuwenhoek 91:1–17. https://doi.org/10.1007/s10482-006-9095-5
doi: 10.1007/s10482-006-9095-5 pubmed: 17016742
van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biot 52:541–545. https://doi.org/10.1007/s002530051557
doi: 10.1007/s002530051557
van Vliet AHM, Stoof J, Poppelaars SW, Bereswill S, Homuth G, Kist M, Kuipers EJ, Kusters JG (2003) Differential regulation of amidase- and formamidase-mediated ammonia production by the Helicobacter pylori Fur Repressor. J Biol Chem 278:9052–9057. https://doi.org/10.1074/jbc.M207542200
doi: 10.1074/jbc.M207542200 pubmed: 12499381
Wang J, Yan D, Dixon R, Wang Y-P (2016) Deciphering the principles of bacterial nitrogen dietary preferences: a strategy for nutrient containment. mBio 7:e00792-16. https://doi.org/10.1128/mBio.00792-16
doi: 10.1128/mBio.00792-16 pubmed: 27435461 pmcid: 4958250
Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974. https://doi.org/10.1021/ac60252a045
doi: 10.1021/ac60252a045
Wendisch VF, De Graaf AA, Sahm H, Eikmanns BJ (2000) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol 182:3088–3096. https://doi.org/10.1128/JB.182.11.3088-3096.2000
doi: 10.1128/JB.182.11.3088-3096.2000 pubmed: 10809686 pmcid: 94493
Wendisch VF, Nampoothiri KM, Lee J-H (2022) Metabolic engineering for valorization of agri- and aqua-culture sidestreams for production of nitrogenous compounds by Corynebacterium glutamicum. Front Microbiol 13:835131. https://doi.org/10.3389/fmicb.2022.835131
doi: 10.3389/fmicb.2022.835131 pubmed: 35211108 pmcid: 8861201
Wendisch VF, Lee J-H (2020) Metabolic engineering in Corynebacterium glutamicum. In: Inui, M., Toyoda, K. (Eds.), Corynebacterium glutamicum - biology and biotechnology, microbiology monographs. Springer International Publishing, 287–322. https://doi.org/10.1007/978-3-030-39267-3_10
Willison JC (1993) Biochemical genetics revisited: the use of mutants to study carbon and nitrogen metabolism in the photosynthetic bacteria. FEMS Microbiol Rev 10:1–38. https://doi.org/10.1111/j.1574-6968.1993.tb05862.x
doi: 10.1111/j.1574-6968.1993.tb05862.x pubmed: 8431308
Witthoff S, Eggeling L, Bott M, Polen T (2012) Corynebacterium glutamicum harbours a molybdenum cofactor-dependent formate dehydrogenase which alleviates growth inhibition in the presence of formate. Microbiology 158:2428–2439. https://doi.org/10.1099/mic.0.059196-0
doi: 10.1099/mic.0.059196-0 pubmed: 22767548
Wolf S, Becker J, Tsuge Y, Kawaguchi H, Kondo A, Marienhagen J, Bott M, Wendisch VF, Wittmann C (2021) Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem 65:197–212. https://doi.org/10.1042/EBC20200134
doi: 10.1042/EBC20200134 pubmed: 34096577 pmcid: 8313993
You L, Page L, Feng X, Berla B, Pakrasi HB, Tang YJ (2012) Metabolic pathway confirmation and discovery through (13)C-labeling of proteinogenic amino acids. JoVE 26(59):e3583 https://doi.org/10.3791/3583
Zahoor A, Lindner SN, Wendisch VF (2012) Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Comput Struct Biotechnol J 3:e201210004. https://doi.org/10.5936/csbj.201210004
doi: 10.5936/csbj.201210004 pubmed: 24688664 pmcid: 3962153
Zerkle AL, Mikhail S (2017) The geobiological nitrogen cycle: from microbes to the mantle. Geobiology 15:343–352. https://doi.org/10.1111/gbi.12228
doi: 10.1111/gbi.12228 pubmed: 28158920 pmcid: 5412885
Zhang B, Jiang Y, Li Z, Wang F, Wu X-Y (2020) Recent progress on chemical production from non-food renewable feedstocks using Corynebacterium glutamicum. Front Bioeng Biotechnol 8:606047.  https://doi.org/10.3389/fbioe.2020.606047

Auteurs

Lynn S Schwardmann (LS)

Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.

Tong Wu (T)

Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.

Aron K Dransfeld (AK)

Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.

Steffen N Lindner (SN)

Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.

Volker F Wendisch (VF)

Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany. volker.wendisch@uni-bielefeld.de.

Articles similaires

Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins

Amyloid accelerator polyphosphate fits as the mystery density in α-synuclein fibrils.

Philipp Huettemann, Pavithra Mahadevan, Justine Lempart et al.
1.00
Polyphosphates alpha-Synuclein Humans Amyloid Molecular Dynamics Simulation

Aminoacid functionalised magnetite nanoparticles Fe

Spoială Angela, Motelica Ludmila, Ilie Cornelia-Ioana et al.
1.00
Magnetite Nanoparticles Tryptophan Biocompatible Materials Microbial Sensitivity Tests Humans

Classifications MeSH