Cooperation between bHLH transcription factors and histones for DNA access.
ARNTL Transcription Factors
/ genetics
Basic Helix-Loop-Helix Transcription Factors
/ metabolism
DNA
/ genetics
Helix-Loop-Helix Motifs
/ genetics
Histones
/ chemistry
Nucleosomes
/ chemistry
Protein Binding
CLOCK Proteins
/ chemistry
Proto-Oncogene Proteins c-myc
/ chemistry
Allosteric Regulation
Leucine Zippers
Octamer Transcription Factor-3
/ metabolism
Protein Multimerization
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
received:
22
07
2022
accepted:
02
06
2023
medline:
14
7
2023
pubmed:
6
7
2023
entrez:
5
7
2023
Statut:
ppublish
Résumé
The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members
Identifiants
pubmed: 37407816
doi: 10.1038/s41586-023-06282-3
pii: 10.1038/s41586-023-06282-3
pmc: PMC10338342
doi:
Substances chimiques
ARNTL Transcription Factors
0
Basic Helix-Loop-Helix Transcription Factors
0
DNA
9007-49-2
Histones
0
Nucleosomes
0
CLOCK Proteins
EC 2.3.1.48
Proto-Oncogene Proteins c-myc
0
Myc associated factor X
0
Octamer Transcription Factor-3
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
385-393Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM107069
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM145737
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS054794
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM141849
Pays : United States
Informations de copyright
© 2023. The Author(s).
Références
de Martin, X., Sodaei, R. & Santpere, G. Mechanisms of binding specificity among bHLH transcription factors. Int. J. Mol. Sci. 22, 9150 (2021).
pubmed: 34502060
pmcid: 8431614
doi: 10.3390/ijms22179150
Nair, S. K. & Burley, S. K. X-ray structures of Myc-Max and Mad-Max recognizing DNA: molecular bases of regulation by proto-oncogenic transcription factors. Cell 112, 193–205 (2003).
pubmed: 12553908
doi: 10.1016/S0092-8674(02)01284-9
Huang, N. et al. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337, 189–194 (2012).
pubmed: 22653727
pmcid: 3694778
doi: 10.1126/science.1222804
McGinty, R. K. & Tan, S. Principles of nucleosome recognition by chromatin factors and enzymes. Curr. Opin. Struct. Biol. 71, 16–26 (2021).
pubmed: 34198054
pmcid: 8648869
doi: 10.1016/j.sbi.2021.05.006
Rey, G. et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9, e1000595 (2011).
pubmed: 21364973
pmcid: 3043000
doi: 10.1371/journal.pbio.1000595
Sobel, J. A. et al. Transcriptional regulatory logic of the diurnal cycle in the mouse liver. PLoS Biol. 15, e2001069 (2017).
pubmed: 28414715
pmcid: 5393560
doi: 10.1371/journal.pbio.2001069
Nakahata, Y. et al. A direct repeat of E-box-like elements is required for cell-autonomous circadian rhythm of clock genes. BMC Mol. Biol. 9, 1 (2008).
pubmed: 18177499
pmcid: 2254435
doi: 10.1186/1471-2199-9-1
Lambert, S. A. et al. The human transcription factors. Cell 175, 598–599 (2018).
pubmed: 30290144
doi: 10.1016/j.cell.2018.09.045
Carroll, P. A., Freie, B. W., Mathsyaraja, H. & Eisenman, R. N. The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front. Med. 12, 412–425 (2018).
pubmed: 30054853
pmcid: 7358075
doi: 10.1007/s11684-018-0650-z
Lee, J. E. et al. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix–loop–helix protein. Science 268, 836–844 (1995).
pubmed: 7754368
doi: 10.1126/science.7754368
Weintraub, H. et al. Muscle-specific transcriptional activation by MyoD. Genes Dev. 5, 1377–1386 (1991).
pubmed: 1651276
doi: 10.1101/gad.5.8.1377
Semenza, G. L., Nejfelt, M. K., Chi, S. M. & Antonarakis, S. E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc. Natl Acad. Sci. USA 88, 5680–5684 (1991).
pubmed: 2062846
pmcid: 51941
doi: 10.1073/pnas.88.13.5680
Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569 (1998).
pubmed: 9616112
doi: 10.1126/science.280.5369.1564
Murre, C. Helix–loop–helix proteins and the advent of cellular diversity: 30 years of discovery. Genes Dev. 33, 6–25 (2019).
pubmed: 30602438
pmcid: 6317319
doi: 10.1101/gad.320663.118
Ma, P. C., Rould, M. A., Weintraub, H. & Pabo, C. O. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell 77, 451–459 (1994).
pubmed: 8181063
doi: 10.1016/0092-8674(94)90159-7
Liu, Z., Venkatesh, S. S. & Maley, C. C. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples. BMC Genomics 9, 509 (2008).
pubmed: 18973670
pmcid: 2628393
doi: 10.1186/1471-2164-9-509
Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).
pubmed: 22464321
pmcid: 3345192
doi: 10.1016/j.cell.2012.03.003
Dhanasekaran, R. et al. The MYC oncogene—the grand orchestrator of cancer growth and immune evasion. Nat. Rev. Clin. Oncol. 19, 23–36 (2022).
pubmed: 34508258
doi: 10.1038/s41571-021-00549-2
Gustafson, C. L. & Partch, C. L. Emerging models for the molecular basis of mammalian circadian timing. Biochemistry 54, 134–149 (2015).
pubmed: 25303119
doi: 10.1021/bi500731f
Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).
pubmed: 25349387
pmcid: 4234565
doi: 10.1073/pnas.1408886111
Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349–354 (2012).
pubmed: 22936566
pmcid: 3694775
doi: 10.1126/science.1226339
Li, G. & Widom, J. Nucleosomes facilitate their own invasion. Nat. Struct. Mol. Biol. 11, 763–769 (2004).
pubmed: 15258568
doi: 10.1038/nsmb801
Adams, C. C. & Workman, J. L. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol. Cell. Biol. 15, 1405–1421 (1995).
pubmed: 7862134
pmcid: 230365
doi: 10.1128/MCB.15.3.1405
Consortium, E. P. et al. Perspectives on ENCODE. Nature 583, 693–698 (2020).
doi: 10.1038/s41586-020-2449-8
Michael, A. K. et al. Mechanisms of OCT4-SOX2 motif readout on nucleosomes. Science 368, 1460–1465 (2020).
pubmed: 32327602
doi: 10.1126/science.abb0074
Lowary, P. T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).
pubmed: 9514715
doi: 10.1006/jmbi.1997.1494
Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 (2018).
pubmed: 29140473
doi: 10.1093/nar/gkx1126
Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).
pubmed: 9305837
doi: 10.1038/38444
Michael, A. K. et al. Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1. Proc. Natl Acad. Sci. USA 114, 1560–1565 (2017).
pubmed: 28143926
pmcid: 5321004
doi: 10.1073/pnas.1615310114
Fribourgh, J. L. Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing. eLife 9, e55275 (2020).
pubmed: 32101164
pmcid: 7064333
doi: 10.7554/eLife.55275
Skrajna, A. et al. Comprehensive nucleosome interactome screen establishes fundamental principles of nucleosome binding. Nucleic Acids Res. 48, 9415–9432 (2020).
pubmed: 32658293
pmcid: 7515726
doi: 10.1093/nar/gkaa544
He, S. et al. Structure of nucleosome-bound human BAF complex. Science 367, 875–881 (2020).
pubmed: 32001526
doi: 10.1126/science.aaz9761
Mashtalir, N. et al. A structural model of the endogenous human BAF complex informs disease mechanisms. Cell 183, 802–817 (2020).
pubmed: 33053319
pmcid: 7717177
doi: 10.1016/j.cell.2020.09.051
Pathare, G. R. et al. Structural mechanism of cGAS inhibition by the nucleosome. Nature 587, 668–672 (2020).
pubmed: 32911482
doi: 10.1038/s41586-020-2750-6
Schalch, T., Duda, S., Sargent, D. F. & Richmond, T. J. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436, 138–141 (2005).
pubmed: 16001076
doi: 10.1038/nature03686
Dodonova, S. O., Zhu, F., Dienemann, C., Taipale, J. & Cramer, P. Nucleosome-bound SOX2 and SOX11 structures elucidate pioneer factor function. Nature 580, 669–672 (2020).
pubmed: 32350470
doi: 10.1038/s41586-020-2195-y
Becker, P. B. & Wu, C. Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol. Cell. Biol. 12, 2241–2249 (1992).
pubmed: 1569951
pmcid: 364396
Eggers, N. & Becker, P. B. Cell-free genomics reveal intrinsic, cooperative and competitive determinants of chromatin interactions. Nucleic Acids Res. 49, 7602–7617 (2021).
pubmed: 34181732
pmcid: 8287947
doi: 10.1093/nar/gkab558
Henikoff, J. G., Belsky, J. A., Krassovsky, K., MacAlpine, D. M. & Henikoff, S. Epigenome characterization at single base-pair resolution. Proc. Natl Acad. Sci. USA 108, 18318–18323 (2011).
pubmed: 22025700
pmcid: 3215028
doi: 10.1073/pnas.1110731108
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).
pubmed: 16904174
doi: 10.1016/j.cell.2006.07.024
Soufi, A. et al. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161, 555–568 (2015).
pubmed: 25892221
pmcid: 4409934
doi: 10.1016/j.cell.2015.03.017
Wesley, N. A. et al. Time resolved-fluorescence resonance energy transfer platform for quantitative nucleosome binding and footprinting. Protein Sci. 31, e4339 (2022).
pubmed: 35634775
pmcid: 9134878
doi: 10.1002/pro.4339
Menet, J. S., Pescatore, S. & Rosbash, M. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev. 28, 8–13 (2014).
pubmed: 24395244
pmcid: 3894415
doi: 10.1101/gad.228536.113
Paquet, E. R., Rey, G. & Naef, F. Modeling an evolutionary conserved circadian cis-element. PLoS Comput. Biol. 4, e38 (2008).
pubmed: 18282089
pmcid: 2242825
doi: 10.1371/journal.pcbi.0040038
Michael, A. K. & Thoma, N. H. Reading the chromatinized genome. Cell 184, 3599–3611 (2021).
pubmed: 34146479
doi: 10.1016/j.cell.2021.05.029
Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008).
pubmed: 18358816
doi: 10.1016/j.cell.2008.02.039
Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 151, 994–1004 (2012).
pubmed: 23159369
pmcid: 3508134
doi: 10.1016/j.cell.2012.09.045
Donovan, B. T. et al. Basic helix–loop–helix pioneer factors interact with the histone octamer to invade nucleosomes and generate nucleosome depleted regions. Mol. Cell 83, 1251–1263 (2023).
pubmed: 36996811
doi: 10.1016/j.molcel.2023.03.006
Polach, K. J. & Widom, J. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800–812 (1996).
pubmed: 8637011
doi: 10.1006/jmbi.1996.0288
Mirny, L. A. Nucleosome-mediated cooperativity between transcription factors. Proc. Natl Acad. Sci. USA 107, 22534–22539 (2010).
pubmed: 21149679
pmcid: 3012490
doi: 10.1073/pnas.0913805107
Ngo, T. T., Zhang, Q., Zhou, R., Yodh, J. G. & Ha, T. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 160, 1135–1144 (2015).
pubmed: 25768909
pmcid: 4409768
doi: 10.1016/j.cell.2015.02.001
Moyle-Heyrman, G., Tims, H. S. & Widom, J. Structural constraints in collaborative competition of transcription factors against the nucleosome. J. Mol. Biol. 412, 634–646 (2011).
pubmed: 21821044
pmcid: 3534743
doi: 10.1016/j.jmb.2011.07.032
Swinstead, E. E., Paakinaho, V., Presman, D. M. & Hager, G. L. Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: a new perspective: multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-dependent chromatin remodeling factors. Bioessays 38, 1150–1157 (2016).
pubmed: 27633730
pmcid: 6319265
doi: 10.1002/bies.201600137
Fierz, B. & Poirier, M. G. Biophysics of chromatin dynamics. Annu. Rev. Biophys. 48, 321–345 (2019).
pubmed: 30883217
doi: 10.1146/annurev-biophys-070317-032847
Hall, M. A. et al. High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat. Struct. Mol. Biol. 16, 124–129 (2009).
pubmed: 19136959
pmcid: 2635915
doi: 10.1038/nsmb.1526
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101
doi: 10.1002/pro.3943
Osakabe, A. et al. Structural basis of pyrimidine-pyrimidone (6-4) photoproduct recognition by UV-DDB in the nucleosome. Sci. Rep. 5, 16330 (2015).
pubmed: 26573481
pmcid: 4648065
doi: 10.1038/srep16330
Kujirai, T. et al. Methods for preparing nucleosomes containing histone variants. Methods Mol. Biol. 1832, 3–20 (2018).
pubmed: 30073519
doi: 10.1007/978-1-4939-8663-7_1
Dyer, P. N. et al. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol. 375, 23–44 (2004).
pubmed: 14870657
doi: 10.1016/S0076-6879(03)75002-2
Abdulrahman, W. et al. A set of baculovirus transfer vectors for screening of affinity tags and parallel expression strategies. Anal. Biochem. 385, 383–385 (2009).
pubmed: 19061853
doi: 10.1016/j.ab.2008.10.044
Wang, Z., Wu, Y., Li, L. & Su, X. D. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix–loop–helix domains with E-box DNA. Cell Res. 23, 213–224 (2013).
pubmed: 23229515
doi: 10.1038/cr.2012.170
Elegheert, J. et al. Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat. Protoc. 13, 2991–3017 (2018).
pubmed: 30455477
pmcid: 6364805
doi: 10.1038/s41596-018-0075-9
Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).
pubmed: 22366317
pmcid: 3311370
doi: 10.1073/pnas.1115485109
Sievers, Q. et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362, eaat0572 (2018).
pubmed: 30385546
pmcid: 6326779
doi: 10.1126/science.aat0572
Kilic, S., Bachmann, A. L., Bryan, L. C. & Fierz, B. Multivalency governs HP1α association dynamics with the silent chromatin state. Nat. Commun. 6, 7313 (2015).
pubmed: 26084584
doi: 10.1038/ncomms8313
Aggarwal, T., Materassi, D., Davison, R., Hays, T. & Salapaka, M. Detection of steps in single molecule data. Cell. Mol. Bioeng. 5, 14–31 (2012).
pubmed: 23956798
doi: 10.1007/s12195-011-0188-5
Gaidatzis, D., Lerch, A., Hahne, F. & Stadler, M. B. QuasR: quantification and annotation of short reads in R. Bioinformatics 31, 1130–1132 (2015).
pubmed: 25417205
doi: 10.1093/bioinformatics/btu781
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
pubmed: 19261174
pmcid: 2690996
doi: 10.1186/gb-2009-10-3-r25
Liu, F., Lossl, P., Scheltema, R., Viner, R. & Heck, A. J. R. Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification. Nat. Commun. 8, 15473 (2017).
pubmed: 28524877
pmcid: 5454533
doi: 10.1038/ncomms15473
Schmidt, J. M. et al. A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC.DNA.Cdc6. Nat. Commun. 13, 1059 (2022).
pubmed: 35217664
pmcid: 8881611
doi: 10.1038/s41467-022-28695-w
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910
doi: 10.1038/nbt.1511
Elias, J. E. & Gygi, S. P. Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol. Biol. 604, 55–71 (2010).
pubmed: 20013364
pmcid: 2922680
doi: 10.1007/978-1-60761-444-9_5
Combe, C. W., Fischer, L. & Rappsilber, J. xiNET: cross-link network maps with residue resolution. Mol. Cell. Proteomics 14, 1137–1147 (2015).
pubmed: 25648531
pmcid: 4390258
doi: 10.1074/mcp.O114.042259
Lagerwaard, I. M., Albanese, P., Jankevics, A. & Scheltema, R. A. Xlink Mapping and AnalySis (XMAS)—smooth integrative modeling in ChimeraX. Preprint at bioRxiv https://doi.org/10.1101/2022.04.21.489026 (2022).
Kahraman, A, Malmstrom, L. & Aebersold, R. Xwalk: computing and visualizing distances in cross-linking experiments. Bioinformatics 27, 2163–2164 (2011).
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319
doi: 10.1093/nar/gkab1038
Stark, H. GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM. Methods Enzymol. 481, 109–126 (2010).
pubmed: 20887855
doi: 10.1016/S0076-6879(10)81005-5
Schenk, A. D., Cavadini, S., Thomä, N. H. & Genoud, C. Live analysis and reconstruction of single-particle cryo-electron microscopy data with CryoFLARE. J. Chem. Inf. Model. 60, 2561–2569 (2020).
pubmed: 32233514
doi: 10.1021/acs.jcim.9b01102
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
pubmed: 30412051
pmcid: 6250425
doi: 10.7554/eLife.42166
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
pubmed: 26592709
pmcid: 4711343
doi: 10.1016/j.jsb.2015.11.003
Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).
pubmed: 31240256
pmcid: 6584505
doi: 10.1038/s42003-019-0437-z
Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. eLife 7, e35383 (2018).
pubmed: 29513216
pmcid: 5854467
doi: 10.7554/eLife.35383
Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
pubmed: 23000701
pmcid: 3690530
doi: 10.1016/j.jsb.2012.09.006
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).
pubmed: 14568533
doi: 10.1016/j.jmb.2003.07.013
Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).
pubmed: 23872039
pmcid: 3834153
doi: 10.1016/j.ultramic.2013.06.004
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702
pmcid: 2815670
doi: 10.1107/S0907444909052925
Jakobi, A. J., Wilmanns, M. & Sachse, C. Model-based local density sharpening of cryo-EM maps. eLife 6, e27131 (2017).
pubmed: 29058676
pmcid: 5679758
doi: 10.7554/eLife.27131
Burnley, T., Palmer, C. M. & Winn, M. Recent developments in the CCP-EM software suite. Acta Crystallogr. D 73, 469–477 (2017).
doi: 10.1107/S2059798317007859
de la Rosa-Trevin, J. M. et al. Xmipp 3.0: an improved software suite for image processing in electron microscopy. J. Struct. Biol. 184, 321–328 (2013).
pubmed: 24075951
doi: 10.1016/j.jsb.2013.09.015
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).
doi: 10.1107/S2059798318006551
Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018).
doi: 10.1107/S2059798318002425
Wang, R. Y. et al. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife 5, e17219 (2016).
pubmed: 27669148
pmcid: 5115868
doi: 10.7554/eLife.17219
Marze, N. A., Burman, S. S. R., Sheffler, W. & Gray, J. J. Efficient flexible backbone protein–protein docking for challenging targets. Bioinformatics 34, 3461–3469 (2018).
Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D 74, 814–840 (2018).
doi: 10.1107/S2059798318009324
Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).
pubmed: 29067766
doi: 10.1002/pro.3330
Matsumoto, S. et al. DNA damage detection in nucleosomes involves DNA register shifting. Nature 571, 79–84 (2019).
pubmed: 31142837
pmcid: 6611726
doi: 10.1038/s41586-019-1259-3
Girardot, C., Scholtalbers, J., Sauer, S., Su, S.-Y. & Furlong, E. E. M. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinf. 17, 419 (2016).
doi: 10.1186/s12859-016-1284-2
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).
pubmed: 21330290
pmcid: 3065696
doi: 10.1093/bioinformatics/btr064
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432
pmcid: 2898526
doi: 10.1016/j.molcel.2010.05.004
Serizay, J. VplotR: set of tools to make V-plots and compute footprint profiles. R version 1.8.0. https://github.com/js2264/VplotR (2022).
Menet, J. S., Rodriguez, J., Abruzzi, K. C. & Rosbash, M. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 1, e00011 (2012).
pubmed: 23150795
pmcid: 3492862
doi: 10.7554/eLife.00011
Sonmezer, C. et al. Molecular co-occupancy identifies transcription factor binding cooperativity in vivo. Mol. Cell 81, 255–267 (2021).
pubmed: 33290745
doi: 10.1016/j.molcel.2020.11.015
Li, T. & Zhu, S. On clustering binary data. in Proc. 2005 SIAM International Conference on Data Mining (SDM) (eds Kargupta, H. et al.) 526–530 (2005).
Xu, H. et al. Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C terminus. Nat. Struct. Mol. Biol. 22, 476–484 (2015).
pubmed: 25961797
pmcid: 4456216
doi: 10.1038/nsmb.3018
Crosby, P., Hoyle, N. P. & O’Neill, J. S. Flexible measurement of bioluminescent reporters using an automated longitudinal luciferase imaging gas- and temperature-optimized recorder (ALLIGATOR). J. Vis. Exp. 130, e56623 (2017).
Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 (2021).
pubmed: 33542510
pmcid: 8183613
doi: 10.1038/s41592-020-01049-4
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
pubmed: 21988835
pmcid: 3261699
doi: 10.1038/msb.2011.75
Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).
pubmed: 19151095
pmcid: 2672624
doi: 10.1093/bioinformatics/btp033