Identification and molecular evolution of the GLX genes in 21 plant species: a focus on the Gossypium hirsutum.
Cotton
Glyoxalase family
Heat treatment
Phylogeny
Journal
BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258
Informations de publication
Date de publication:
22 Aug 2023
22 Aug 2023
Historique:
received:
13
03
2023
accepted:
19
07
2023
medline:
24
8
2023
pubmed:
23
8
2023
entrez:
23
8
2023
Statut:
epublish
Résumé
The glyoxalase system includes glyoxalase I (GLXI), glyoxalase II (GLXII) and glyoxalase III (GLXIII), which are responsible for methylglyoxal (MG) detoxification and involved in abiotic stress responses such as drought, salinity and heavy metal. In this study, a total of 620 GLX family genes were identified from 21 different plant species. The results of evolutionary analysis showed that GLX genes exist in all species from lower plants to higher plants, inferring that GLX genes might be important for plants, and GLXI and GLXII account for the majority. In addition, motif showed an expanding trend in the process of evolution. The analysis of cis-acting elements in 21 different plant species showed that the promoter region of the GLX genes were rich in phytohormones and biotic and abiotic stress-related elements, indicating that GLX genes can participate in a variety of life processes. In cotton, GLXs could be divided into two groups and most GLXIs distributed in group I, GLXIIs and GLXIIIs mainly belonged to group II, indicating that there are more similarities between GLXII and GLXIII in cotton evolution. The transcriptome data analysis and quantitative real-time PCR analysis (qRT-PCR) show that some members of GLX family would respond to high temperature treatment in G.hirsutum. The protein interaction network of GLXs in G.hirsutum implied that most members can participate in various life processes through protein interactions. The results elucidated the evolutionary history of GLX family genes in plants and lay the foundation for their functions analysis in cotton.
Sections du résumé
BACKGROUND
BACKGROUND
The glyoxalase system includes glyoxalase I (GLXI), glyoxalase II (GLXII) and glyoxalase III (GLXIII), which are responsible for methylglyoxal (MG) detoxification and involved in abiotic stress responses such as drought, salinity and heavy metal.
RESULTS
RESULTS
In this study, a total of 620 GLX family genes were identified from 21 different plant species. The results of evolutionary analysis showed that GLX genes exist in all species from lower plants to higher plants, inferring that GLX genes might be important for plants, and GLXI and GLXII account for the majority. In addition, motif showed an expanding trend in the process of evolution. The analysis of cis-acting elements in 21 different plant species showed that the promoter region of the GLX genes were rich in phytohormones and biotic and abiotic stress-related elements, indicating that GLX genes can participate in a variety of life processes. In cotton, GLXs could be divided into two groups and most GLXIs distributed in group I, GLXIIs and GLXIIIs mainly belonged to group II, indicating that there are more similarities between GLXII and GLXIII in cotton evolution. The transcriptome data analysis and quantitative real-time PCR analysis (qRT-PCR) show that some members of GLX family would respond to high temperature treatment in G.hirsutum. The protein interaction network of GLXs in G.hirsutum implied that most members can participate in various life processes through protein interactions.
CONCLUSIONS
CONCLUSIONS
The results elucidated the evolutionary history of GLX family genes in plants and lay the foundation for their functions analysis in cotton.
Identifiants
pubmed: 37608304
doi: 10.1186/s12864-023-09524-w
pii: 10.1186/s12864-023-09524-w
pmc: PMC10464159
doi:
Substances chimiques
carbon-sulfur lyase
EC 4.4.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
474Informations de copyright
© 2023. BioMed Central Ltd., part of Springer Nature.
Références
Mol Biol Evol. 2017 May 1;34(5):1083-1099
pubmed: 28104746
Mol Biol Rep. 2021 Nov;48(11):7077-7085
pubmed: 34535835
Int J Mol Sci. 2020 Jan 29;21(3):
pubmed: 32013234
PLoS One. 2015 Apr 23;10(4):e0122117
pubmed: 25906259
Front Plant Sci. 2016 Sep 13;7:1341
pubmed: 27679640
Int Rev Neurobiol. 2016;131:193-205
pubmed: 27793218
Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432
pubmed: 30357350
Plant Sci. 2014 Mar;217-218:109-19
pubmed: 24467902
Toxicol Lett. 1994 Jul;73(1):3-24
pubmed: 8042200
Plant Cell Rep. 2021 Aug;40(8):1451-1469
pubmed: 33839877
Plant J. 1997 Jun;11(6):1315-24
pubmed: 9225470
Front Genet. 2018 Oct 23;9:494
pubmed: 30405700
Mol Biochem Parasitol. 2016 Sep - Oct;209(1-2):64-75
pubmed: 27012486
Semin Nephrol. 2004 Sep;24(5):474-8
pubmed: 15490414
J Biomed Biotechnol. 2011;2011:354801
pubmed: 22131803
Biochem Soc Trans. 2014 Apr;42(2):485-90
pubmed: 24646265
Planta. 1993;189(4):561-6
pubmed: 7763577
Plant Mol Biol. 1998 Mar;36(5):639-48
pubmed: 9526496
BMC Evol Biol. 2014 Apr 23;14:86
pubmed: 24758716
Front Plant Sci. 2018 May 24;9:667
pubmed: 29881392
Heart Lung Circ. 2021 Nov;30(11):1681-1693
pubmed: 34393049
Mol Plant. 2020 Aug 3;13(8):1194-1202
pubmed: 32585190
Plant Biol (Stuttg). 2021 May;23 Suppl 1:181-192
pubmed: 33135242
Physiol Plant. 2022 Jan;174(1):e13609
pubmed: 34851527
J Mammary Gland Biol Neoplasia. 2002 Jul;7(3):327-45
pubmed: 12751895
Plant Mol Biol. 1995 Dec;29(6):1223-33
pubmed: 8616220
Plant J. 1999 Feb;17(4):385-95
pubmed: 10205896
Nucleic Acids Res. 2019 Jul 2;47(W1):W270-W275
pubmed: 31114888
Physiol Plant. 2021 Jun;172(2):351-370
pubmed: 32542778
Plants (Basel). 2020 Aug 14;9(8):
pubmed: 32823972
Int J Mol Sci. 2017 Jan 20;18(1):
pubmed: 28117669
Plant Physiol Biochem. 2022 Jul 15;183:85-95
pubmed: 35569169
Exp Biol Med (Maywood). 2017 May;242(10):1095-1103
pubmed: 28361585
Mol Biol Rep. 2010 Feb;37(2):729-35
pubmed: 19513813
Biol Res. 2018 Nov 14;51(1):47
pubmed: 30428929
Plant J. 1998 Jun;14(6):673-83
pubmed: 9681032
Antioxidants (Basel). 2021 Feb 22;10(2):
pubmed: 33671767
Nat Genet. 2019 Apr;51(4):739-748
pubmed: 30886425
Genom Data. 2015 Apr 14;4:143-5
pubmed: 26484201
Semin Cell Dev Biol. 2011 May;22(3):278-84
pubmed: 21310260
Trends Plant Sci. 1999 Jun;4(6):210-214
pubmed: 10366876
Mol Biol Evol. 2013 Dec;30(12):2725-9
pubmed: 24132122
Antioxidants (Basel). 2021 Apr 23;10(5):
pubmed: 33922426
Biochemistry (Mosc). 2009 Feb;74(2):117-29
pubmed: 19267666
Int J Mol Sci. 2022 Jun 30;23(13):
pubmed: 35806344
Plant Mol Biol. 1990 Oct;15(4):593-604
pubmed: 2102377
J Am Chem Soc. 2002 Nov 6;124(44):13047-52
pubmed: 12405831
Oxid Med Cell Longev. 2019 Aug 14;2019:3085756
pubmed: 31485289
Curr Protoc Bioinformatics. 2002 Aug;Chapter 2:Unit 2.3
pubmed: 18792934
Trends Endocrinol Metab. 2020 Feb;31(2):81-92
pubmed: 31757593
Int J Mol Sci. 2020 Dec 30;22(1):
pubmed: 33396745
Front Plant Sci. 2021 Jun 04;12:667458
pubmed: 34149764
Free Radic Biol Med. 2018 Jul;122:96-109
pubmed: 29545071
Plant Cell Rep. 2013 Jul;32(7):959-70
pubmed: 23535869
Nature. 2012 Dec 20;492(7429):423-7
pubmed: 23257886
Int J Mol Sci. 2017 Feb 23;18(3):
pubmed: 28241483
Int J Mol Sci. 2018 Oct 06;19(10):
pubmed: 30301220
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D142-4
pubmed: 14681379
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Sci Rep. 2022 Aug 11;12(1):13680
pubmed: 35953529
Nat Rev Mol Cell Biol. 2022 Oct;23(10):680-694
pubmed: 35513717
Nat Genet. 2018 Jun;50(6):796-802
pubmed: 29736014
Front Oncol. 2022 Jul 08;12:857746
pubmed: 35898868
J Plant Res. 2021 Sep;134(5):1083-1094
pubmed: 33886006
New Phytol. 2009 Nov;184(3):552-565
pubmed: 19659659
PLoS One. 2013 Apr 30;8(4):e62194
pubmed: 23646119
Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368
pubmed: 27924014
BMC Evol Biol. 2020 Nov 3;20(1):142
pubmed: 33143637
Nucleic Acids Res. 2002 Jan 1;30(1):325-7
pubmed: 11752327
BMC Plant Biol. 2022 Mar 22;22(1):134
pubmed: 35317739
Antioxidants (Basel). 2020 Oct 01;9(10):
pubmed: 33019494
Microbiology (Reading). 2000 Apr;146 ( Pt 4):877-884
pubmed: 10784046
Genome Biol Evol. 2016 Jul 12;8(7):2106-17
pubmed: 27289101
Physiol Plant. 2021 Jun;172(2):780-794
pubmed: 33034392
Ecotoxicology. 2019 Apr;28(3):261-276
pubmed: 30761430
Semin Cancer Biol. 2018 Apr;49:64-74
pubmed: 28600198
J Proteomics. 2014 Jun 13;105:74-84
pubmed: 24680693
Biosci Biotechnol Biochem. 2009 Sep;73(9):2007-13
pubmed: 19734676
BMC Plant Biol. 2020 Oct 8;20(1):462
pubmed: 33032521
Plant Signal Behav. 2010 Mar;5(3):224-32
pubmed: 20118660