18S rDNA sequence-structure phylogeny of the eukaryotes simultaneously inferred from sequences and their individual secondary structures.


Journal

BMC research notes
ISSN: 1756-0500
Titre abrégé: BMC Res Notes
Pays: England
ID NLM: 101462768

Informations de publication

Date de publication:
01 May 2024
Historique:
received: 12 01 2024
accepted: 23 04 2024
medline: 2 5 2024
pubmed: 2 5 2024
entrez: 1 5 2024
Statut: epublish

Résumé

The eukaryotic tree of life has been subject of numerous studies ever since the nineteenth century, with more supergroups and their sister relations being decoded in the last years. In this study, we reconstructed the phylogeny of eukaryotes using complete 18S rDNA sequences and their individual secondary structures simultaneously. After the sequence-structure data was encoded, it was automatically aligned and analyzed using sequence-only as well as sequence-structure approaches. We present overall neighbor-joining trees of 211 eukaryotes as well as the respective profile neighbor-joining trees, which helped to resolve the basal branching pattern. A manually chosen subset was further inspected using neighbor-joining, maximum parsimony, and maximum likelihood analyses. Additionally, the 75 and 100 percent consensus structures of the subset were predicted. All sequence-structure approaches show improvements compared to the respective sequence-only approaches: the average bootstrap support per node of the sequence-structure profile neighbor-joining analyses with 90.3, was higher than the average bootstrap support of the sequence-only profile neighbor-joining analysis with 73.9. Also, the subset analyses using sequence-structure data were better supported. Furthermore, more subgroups of the supergroups were recovered as monophyletic and sister group relations were much more comparable to results as obtained by multi-marker analyses.

Identifiants

pubmed: 38693573
doi: 10.1186/s13104-024-06786-9
pii: 10.1186/s13104-024-06786-9
doi:

Substances chimiques

RNA, Ribosomal, 18S 0
DNA, Ribosomal 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

124

Informations de copyright

© 2024. The Author(s).

Références

Simpson AGB, Roger AJ. The real “Kingdoms” of eukaryotes. Curr Biol. 2004. https://doi.org/10.1016/j.cub.2004.08.038 .
doi: 10.1016/j.cub.2004.08.038 pubmed: 15341755
Keeling PJ, Burki F. Progress towards the Tree of Eukaryotes. Curr Biol. 2019. https://doi.org/10.1016/j.cub.2019.07.031 .
doi: 10.1016/j.cub.2019.07.031 pubmed: 31430481
Burki F, Roger AJ, Brown MW, Simpson AGB. The new tree of eukaryotes. Trends Ecol Evol. 2020. https://doi.org/10.1016/j.tree.2019.08.008 .
doi: 10.1016/j.tree.2019.08.008 pubmed: 31606140
Xie Q, Lin J, Qin Y, Zhou J, Bu W. Structural diversity of eukaryotic 18S rRNA and its impact on alignment and phylogenetic reconstruction. Protein Cell. 2011. https://doi.org/10.1007/s13238-011-1017-2 .
doi: 10.1007/s13238-011-1017-2 pubmed: 22183811 pmcid: 4875213
Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022. https://doi.org/10.1093/nar/gkab1112 .
doi: 10.1093/nar/gkab1112 pubmed: 34850943 pmcid: 9825519
Keller A, Förster F, Müller T, Dandekar T, Schultz J, Wolf M. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biol Direct. 2010. https://doi.org/10.1186/1745-6150-5-4 .
doi: 10.1186/1745-6150-5-4 pubmed: 20078867 pmcid: 2821295
Heeg JS, Wolf M. ITS2 and 18S rDNA sequence-structure phylogeny of Chlorella and allies (Chlorophyta, Trebouxiophyceae, Chlorellaceae). Plant Gene. 2015. https://doi.org/10.1016/j.plgene.2015.08.001 .
doi: 10.1016/j.plgene.2015.08.001
Lim HC, Teng ST, Lim PT, Wolf M, Leaw CP. 18S rDNA phylogeny of Pseudo-nitzschia (Bacillariophyceae) inferred from sequence-structure information. Phycologia. 2016. https://doi.org/10.2216/15-78.1 .
doi: 10.2216/15-78.1
Buchheim MA, Müller T, Wolf M. 18S rDNA sequence-structure phylogeny of the Chlorophyceae with special emphasis on the Sphaeropleales. Plant Gene. 2017. https://doi.org/10.1016/j.plgene.2017.05.005 .
doi: 10.1016/j.plgene.2017.05.005
Czech V, Wolf M. RNA consensus structures for inferring green algal phylogeny: a three-taxon analysis for Golenkinia/Jenufa, Sphaeropleales and Volvocales (Chlorophyta, Chlorophyceae). Fottea. 2020. https://doi.org/10.5507/fot.2019.016 .
doi: 10.5507/fot.2019.016
Borges AR, Engstler M, Wolf M. 18S rRNA gene sequence-structure phylogeny of the Trypanosomatida (Kinetoplastea, Euglenozoa) with special reference to Trypanosoma. Eur J Protistol. 2021. https://doi.org/10.1016/j.ejop.2021.125824 .
doi: 10.1016/j.ejop.2021.125824 pubmed: 34352687
Plieger T, Wolf M. 18S and ITS2 rDNA sequence-structure phylogeny of Prototheca (Chlorophyta, Trebouxiophyceae). Biologia. 2022. https://doi.org/10.1007/s11756-021-00971-y .
doi: 10.1007/s11756-021-00971-y
Weimer M, Vďačný P, Wolf M. Paramecium: RNA sequence-structure phylogenetics. Int J Syst Evol Microbiol. 2023. https://doi.org/10.1099/ijsem.0.005744 .
doi: 10.1099/ijsem.0.005744 pubmed: 37022772
Rackevei AS, Karnkowska A, Wolf M. 18S rDNA sequence-structure phylogeny of the Euglenophyceae (Euglenozoa, Euglenida). J Eukaryot Microbiol. 2023. https://doi.org/10.1111/jeu.12959 .
doi: 10.1111/jeu.12959 pubmed: 36478494
Salvi D, Mariottini P. Molecular phylogenetics in 2D: ITS2 rRNA evolution and sequence-structure barcode from Veneridae to Bivalvia. Mol Phylogenet Evol. 2012. https://doi.org/10.1016/j.ympev.2012.07.017 .
doi: 10.1016/j.ympev.2012.07.017 pubmed: 22846682
Salvi D, Bellavia G, Cervelli M, Mariottini P. The analysis of rRNA sequence-structure in phylogenetics: an application to the family Pectinidae (Mollusca: Bivalvia). Mol Phylogenet Evol. 2010. https://doi.org/10.1016/j.ympev.2010.04.025 .
doi: 10.1016/j.ympev.2010.04.025 pubmed: 20416386
RNAcentral Consortium. RNAcentral: an international database of ncRNA sequences. Nucleic Acids Res. 2015. https://doi.org/10.1093/nar/gku991 .
doi: 10.1093/nar/gku991
Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, et al. The comparative RNA Web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics. 2002. https://doi.org/10.1186/1471-2105-3-2 .
doi: 10.1186/1471-2105-3-2 pubmed: 11869452 pmcid: 116672
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. ClustalW and ClustalX Version 2.0. Bioinformatics. 2007. https://doi.org/10.1093/bioinformatics/btm404 .
doi: 10.1093/bioinformatics/btm404 pubmed: 17846036
Seibel PN, Müller T, Dandekar T, Schultz J, Wolf M. 4SALE—a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics. 2006. https://doi.org/10.1186/1471-2105-7-498 .
doi: 10.1186/1471-2105-7-498 pubmed: 17101042 pmcid: 1637121
Seibel PN, Müller T, Dandekar T, Wolf M. Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Res Notes. 2008. https://doi.org/10.1186/1756-0500-1-91 .
doi: 10.1186/1756-0500-1-91 pubmed: 18854023 pmcid: 2587473
Wolf M, Koetschan C, Müller T. ITS2, 18S, 16S or any other RNA—simply aligning sequences and their individual secondary structures simultaneously by an automatic approach. Gene. 2014. https://doi.org/10.1016/j.gene.2014.05.065 .
doi: 10.1016/j.gene.2014.05.065 pubmed: 24881812
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987. https://doi.org/10.1093/oxfordjournals.molbev.a040454 .
doi: 10.1093/oxfordjournals.molbev.a040454 pubmed: 3447015
Müller T, Rahmann S, Dandekar T, Wolf M. Accurate and robust phylogeny estimation based on profile distances: a study of the Chlorophyceae (Chlorophyta). BMC Evol Biol. 2004. https://doi.org/10.1186/1471-2148-4-20 .
doi: 10.1186/1471-2148-4-20 pubmed: 15222898 pmcid: 449703
Friedrich J, Dandekar T, Wolf M, Müller T. ProfDist: a tool for the construction of large phylogenetic trees based on profile distances. Bioinformatics. 2005. https://doi.org/10.1093/bioinformatics/bti289 .
doi: 10.1093/bioinformatics/bti289 pubmed: 15677706
Wolf M, Ruderisch B, Dandekar T, Schultz J, Müller T. ProfDistS: (profile-) distance based phylogeny on sequence-structure alignments. Bioinformatics. 2008. https://doi.org/10.1093/bioinformatics/btn453 .
doi: 10.1093/bioinformatics/btn453 pubmed: 18723521
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 2019. https://doi.org/10.1111/jeu.12691 .
doi: 10.1111/jeu.12691 pubmed: 30257078 pmcid: 6492006
Rahmann S, Müller T, Dandekar T, Wolf M. Efficient and Robust Analysis of Large Phylogenetic Datasets. In: Hsu H-H, editor. Advanced data mining technologies in bioinformatics. Hershey: Idea Group Publishing; 2006. https://doi.org/10.4018/978-1-59140-863-5.ch006 .
doi: 10.4018/978-1-59140-863-5.ch006
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985. https://doi.org/10.2307/2408678 .
doi: 10.2307/2408678 pubmed: 28561359
Camin JH, Sokal RR. A method for deducing branching sequences in phylogeny. Evolution. 1965. https://doi.org/10.2307/2406441 .
doi: 10.2307/2406441
Felsenstein J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution. 1981. https://doi.org/10.1111/j.1558-5646.1981.tb04991.x .
doi: 10.1111/j.1558-5646.1981.tb04991.x pubmed: 28563384
Swofford DL. PAUP*. Phylogenetic analysis using parsimony (*and other methods) version 4.0a. Massachusetts: Sinauer Associates Sunderland; 2002.
Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011. https://doi.org/10.1093/bioinformatics/btq706 .
doi: 10.1093/bioinformatics/btq706 pubmed: 22047014 pmcid: 3371636
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2024. https://www.R-project.org/ .
Byun Y, Han K. PseudoViewer: web application and web service for visualizing RNA pseudoknots and secondary structures. Nucleic Acids Res. 2006. https://doi.org/10.1093/nar/gkl210 .
doi: 10.1093/nar/gkl210 pubmed: 16845039 pmcid: 1538805
Dams E, Hendriks L, van de Peer Y, Neefs JM, Smits G, Vandenbempt I, de Wachter R. Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res. 1990. https://doi.org/10.1093/nar/18.suppl.2237 .
doi: 10.1093/nar/18.suppl.2237
Noller HF, Donohue JP, Gutell RR. The universally conserved nucleotides of the small subunit ribosomal RNAs. RNA. 2022. https://doi.org/10.1261/rna.079019.121 .
doi: 10.1261/rna.079019.121 pubmed: 35115361 pmcid: 9014874
Malik AJ, Poole AM, Allison JR. Structural Phylogenetics with Confidence. Mol Biol Evol. 2020. https://doi.org/10.1093/molbev/msaa100 .
doi: 10.1093/molbev/msaa100 pubmed: 32302382 pmcid: 7475046

Auteurs

Eva Rapp (E)

Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.

Matthias Wolf (M)

Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany. matthias.wolf@uni-wuerzburg.de.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Classifications MeSH