Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
26 Jun 2024
26 Jun 2024
Historique:
received:
11
04
2024
accepted:
10
06
2024
medline:
27
6
2024
pubmed:
27
6
2024
entrez:
26
6
2024
Statut:
epublish
Résumé
Borgs are huge extrachromosomal elements (ECE) of anaerobic methane-consuming "Candidatus Methanoperedens" archaea. Here, we used nanopore sequencing to validate published complete genomes curated from short reads and to reconstruct new genomes. 13 complete and four near-complete linear genomes share 40 genes that define a largely syntenous genome backbone. We use these conserved genes to identify new Borgs from peatland soil and to delineate Borg phylogeny, revealing two major clades. Remarkably, Borg genes encoding nanowire-like electron-transferring cytochromes and cell surface proteins are more highly expressed than those of host Methanoperedens, indicating that Borgs augment the Methanoperedens activity in situ. We reconstructed the first complete 4.00 Mbp genome for a Methanoperedens that is inferred to be a Borg host and predicted its methylation motifs, which differ from pervasive TC and CC methylation motifs of the Borgs. Thus, methylation may enable Methanoperedens to distinguish their genomes from those of Borgs. Very high Borg to Methanoperedens ratios and structural predictions suggest that Borgs may be capable of encapsulation. The findings clearly define Borgs as a distinct class of ECE with shared genomic signatures, establish their diversification from a common ancestor with genetic inheritance, and raise the possibility of periodic existence outside of host cells.
Identifiants
pubmed: 38926353
doi: 10.1038/s41467-024-49548-8
pii: 10.1038/s41467-024-49548-8
doi:
Substances chimiques
Methane
OP0UW79H66
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5414Informations de copyright
© 2024. The Author(s).
Références
Al-Shayeb, B. et al. Borgs are giant genetic elements with potential to expand metabolic capacity. Nature 610, 731–736 (2022).
pubmed: 36261517
pmcid: 9605863
doi: 10.1038/s41586-022-05256-1
Chen, L.-X., Anantharaman, K., Shaiber, A., Eren, A. M. & Banfield, J. F. Accurate and complete genomes from metagenomes. Genome Res. 30, 315–333 (2020).
pubmed: 32188701
pmcid: 7111523
doi: 10.1101/gr.258640.119
Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).
pubmed: 23892779
doi: 10.1038/nature12375
Arshad, A. et al. A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by methanoperedens-like archaea. Front. Microbiol. 6, 1423 (2015).
pubmed: 26733968
pmcid: 4683180
doi: 10.3389/fmicb.2015.01423
McIlroy, S. J. et al. Anaerobic methanotroph “Candidatus Methanoperedens nitroreducens” has a pleomorphic life cycle. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01292-9 . (2023).
Schoelmerich, M. C., Sachdeva, R., West-Roberts, J., Waldburger, L. & Banfield, J. F. Tandem repeats in giant archaeal Borg elements undergo rapid evolution and create new intrinsically disordered regions in proteins. PLoS Biol. 21, e3001980 (2023).
pubmed: 36701369
pmcid: 9879509
doi: 10.1371/journal.pbio.3001980
van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).
pubmed: 24773235
pmcid: 4095912
doi: 10.1021/cr400525m
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Jankevicius, G., Ariza, A., Ahel, M. & Ahel, I. The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. Mol. Cell 64, 1109–1116 (2016).
pubmed: 27939941
pmcid: 5179494
doi: 10.1016/j.molcel.2016.11.014
Weller, S. K. & Coen, D. M. Herpes simplex viruses: mechanisms of DNA replication. Cold Spring Harb. Perspect. Biol. 4, a013011 (2012).
pubmed: 22952399
pmcid: 3428768
doi: 10.1101/cshperspect.a013011
Burroughs, A. M., Zhang, D., Schäffer, D. E., Iyer, L. M. & Aravind, L. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res. 43, 10633–10654 (2015).
pubmed: 26590262
pmcid: 4678834
doi: 10.1093/nar/gkv1267
Amitsur, M., Levitz, R. & Kaufmann, G. Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. EMBO J. 6, 2499–2503 (1987).
pubmed: 2444436
pmcid: 553660
doi: 10.1002/j.1460-2075.1987.tb02532.x
Griffith, E. C. et al. Ureadepsipeptides as ClpP activators. ACS Infect. Dis. 5, 1915–1925 (2019).
pubmed: 31588734
pmcid: 6916429
doi: 10.1021/acsinfecdis.9b00245
Boccitto, M. & Wolin, S. L. Ro60 and Y RNAs: structure, functions, and roles in autoimmunity. Crit. Rev. Biochem. Mol. Biol. 54, 133–152 (2019).
pubmed: 31084369
pmcid: 6542706
doi: 10.1080/10409238.2019.1608902
Liang, Q. et al. Structure and activity of a bacterial defense-associated 3’−5’ exonuclease. Protein Sci. 31, e4374 (2022).
pubmed: 35762727
pmcid: 9214754
doi: 10.1002/pro.4374
Fromme, J. C. & Verdine, G. L. Structure of a trapped endonuclease III-DNA covalent intermediate. EMBO J. 22, 3461–3471 (2003).
pubmed: 12840008
pmcid: 165637
doi: 10.1093/emboj/cdg311
Wang, P., Selvadurai, K. & Huang, R. H. Reconstitution and structure of a bacterial Pnkp1-Rnl-Hen1 RNA repair complex. Nat. Commun. 6, 6876 (2015).
pubmed: 25882814
doi: 10.1038/ncomms7876
Bailly, V., Sung, P., Prakash, L. & Prakash, S. DNA.RNA helicase activity of RAD3 protein of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88, 9712–9716 (1991).
pubmed: 1719538
pmcid: 52789
doi: 10.1073/pnas.88.21.9712
Fülöp, A., Béres, R., Tengölics, R., Rákhely, G. & Kovács, K. L. Relationship between PHA and hydrogen metabolism in the purple sulfur phototrophic bacterium Thiocapsa roseopersicina BBS. Int. J. Hydrog. Energy 37, 4915–4924 (2012).
doi: 10.1016/j.ijhydene.2011.12.019
Bamford, D. H. et al. Constituents of SH1, a novel lipid-containing virus infecting the halophilic euryarchaeon Haloarcula hispanica. J. Virol. 79, 9097–9107 (2005).
pubmed: 15994804
pmcid: 1168735
doi: 10.1128/JVI.79.14.9097-9107.2005
Santos-Pérez, I. et al. Structural basis for assembly of vertical single β-barrel viruses. Nat. Commun. 10, 1184 (2019).
pubmed: 30862777
pmcid: 6414509
doi: 10.1038/s41467-019-08927-2
Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).
pubmed: 33349699
doi: 10.1038/s41587-020-00774-7
Camargo, A. P. et al. You can move, but you can’t hide: identification of mobile genetic elements with geNomad. bioRxiv https://doi.org/10.1101/2023.03.05.531206 . (2023).
Vellani, T. S. & Myers, R. S. Bacteriophage SPP1 Chu is an alkaline exonuclease in the SynExo family of viral two-component recombinases. J. Bacteriol. 185, 2465–2474 (2003).
pubmed: 12670970
pmcid: 152610
doi: 10.1128/JB.185.8.2465-2474.2003
Weidner-Glunde, M., Mariggiò, G. & Schulz, T. F. Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen: replicating and shielding viral DNA during viral persistence. J. Virol. 91, e01083-16 (2017).
Grady, L. M. et al. The exonuclease activity of herpes simplex virus 1 UL12 is required for production of viral DNA that can be packaged to produce infectious virus. J. Virol. 91, e01380-17 (2017).
Okura, T., Taneno, A. & Oishi, E. Cell-to-cell transmission of turkey herpesvirus in chicken embryo cells via tunneling nanotubes. Avian Dis. 65, 335–339 (2021).
pubmed: 34427404
doi: 10.1637/aviandiseases-D-21-00022
Schoelmerich, M. C. et al. A widespread group of large plasmids in methanotrophic Methanoperedens archaea. Nat. Commun. 13, 1–11 (2022).
doi: 10.1038/s41467-022-34588-9
Xiang, X. et al. Sulfolobus tengchongensis spindle-shaped virus STSV1: virus-host interactions and genomic features. J. Virol. 79, 8677–8686 (2005).
pubmed: 15994761
pmcid: 1168784
doi: 10.1128/JVI.79.14.8677-8686.2005
Hoelzer, K., Shackelton, L. A. & Parrish, C. R. Presence and role of cytosine methylation in DNA viruses of animals. Nucleic Acids Res. 36, 2825–2837 (2008).
pubmed: 18367473
pmcid: 2396429
doi: 10.1093/nar/gkn121
Gu, Y. et al. Structure of Geobacter cytochrome OmcZ identifies mechanism of nanowire assembly and conductivity. Nat. Microbiol. 8, 284–298 (2023).
pubmed: 36732469
pmcid: 9999484
doi: 10.1038/s41564-022-01315-5
Yalcin, S. E. et al. Electric field stimulates production of highly conductive microbial OmcZ nanowires. Nat. Chem. Biol. 16, 1136–1142 (2020).
pubmed: 32807967
pmcid: 7502555
doi: 10.1038/s41589-020-0623-9
Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).
pubmed: 26490622
doi: 10.1038/nature15733
Baquero, D. P. et al. Extracellular cytochrome nanowires appear to be ubiquitous in prokaryotes. Cell 186, 2853–2864.e8 (2023).
Ouboter, H. T. et al. Mechanisms of extracellular electron transfer in anaerobic methanotrophic archaea. Nat. Commun. 15, 1477 (2024).
pubmed: 38368447
pmcid: 10874420
doi: 10.1038/s41467-024-45758-2
Wilson, R. M. et al. Soil metabolome response to whole-ecosystem warming at the spruce and peatland responses under changing environments experiment. Proc. Natl. Acad. Sci. USA. 118, e2004192118 (2021).
Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. https://www.osti.gov/biblio/1241166-bbmap-fast-accurate-splice-aware-aligner (2014).
Joshi, N. A., Fass, J. & Others. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33)[Software] https://github.com/najoshi/sickle (2011).
Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).
pubmed: 22495754
doi: 10.1093/bioinformatics/bts174
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinforma. 70, e102 (2020).
doi: 10.1002/cpbi.102
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).
pubmed: 20211023
pmcid: 2848648
doi: 10.1186/1471-2105-11-119
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
pubmed: 20709691
doi: 10.1093/bioinformatics/btq461
Fastp: an ultra-fast all-in-one FASTQ preprocessor (QC/Adapters/Trimming/Filtering/Splitting/Merging…). https://github.com/OpenGene/fastp (Github).
Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb. Genom. 3, e000132 (2017).
pubmed: 29177090
pmcid: 5695209
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242
pmcid: 6137996
doi: 10.1093/bioinformatics/bty191
Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).
pubmed: 33020656
pmcid: 10699202
doi: 10.1038/s41592-020-00971-x
Aury, J.-M. & Istace, B. Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genom. Bioinform. 3, lqab034 (2021).
pubmed: 33987534
pmcid: 8092372
doi: 10.1093/nargab/lqab034
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Brown, C. T., Olm, M. R., Thomas, B. C. & Banfield, J. F. Measurement of bacterial replication rates in microbial communities. Nat. Biotechnol. 34, 1256–1263 (2016).
pubmed: 27819664
pmcid: 5538567
doi: 10.1038/nbt.3704
Mirdita, M., Ovchinnikov, S. & Steinegger, M. ColabFold - Making protein folding accessible to all. bioRxiv https://doi.org/10.1101/2021.08.15.456425 . (2021).
van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01773-0 . (2023).
Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D. Biol. Crystallogr. 60, 2256–2268 (2004).
pubmed: 15572779
doi: 10.1107/S0907444904026460
DeLano, W. L. The PyMOL molecular graphics system. http://www.pymol.org (2002).
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
pubmed: 29035372
doi: 10.1038/nbt.3988
Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2011).
pubmed: 22198341
doi: 10.1038/nmeth.1818
Söding, J. Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 (2005).
pubmed: 15531603
doi: 10.1093/bioinformatics/bti125
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712
doi: 10.1016/S0022-2836(05)80360-2
Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).
pubmed: 32766782
pmcid: 7498326
doi: 10.1093/nar/gkaa621
OpenAI. GPT-4 Technical Report. arXiv https://arxiv.org/abs/2303.08774 (2023).
Nanodisco: a toolbox for discovering and exploiting multiple types of DNA methylation from individual bacteria and microbiomes using nanopore sequencing. https://github.com/fanglab/nanodisco (Github).
Gilchrist, C. L. M. & Chooi, Y.-H. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics https://doi.org/10.1093/bioinformatics/btab007 . (2021).
Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).
pubmed: 24288371
doi: 10.1093/nar/gkt1223
Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).
pubmed: 26083755
doi: 10.1038/nature14486
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
pubmed: 23193283
doi: 10.1093/nar/gks1219
Woodcroft et al. SingleM and Sandpiper: robust microbial taxonomic profiles from metagenomic data. bioRxiv https://www.biorxiv.org/content/10.1101/2024.01.30.578060v1 (2024).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
pubmed: 23329690
pmcid: 3603318
doi: 10.1093/molbev/mst010
Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).
pubmed: 20626897
pmcid: 3017758
doi: 10.1186/1471-2148-10-210
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
pubmed: 25371430
doi: 10.1093/molbev/msu300
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
pubmed: 29077904
doi: 10.1093/molbev/msx281
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).
pubmed: 27095192
pmcid: 4987883
doi: 10.1093/nar/gkw290
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
pubmed: 29722887
pmcid: 5967553
doi: 10.1093/molbev/msy096
Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).
pubmed: 30778233
doi: 10.1038/s41587-019-0036-z
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
pubmed: 21988835
pmcid: 3261699
doi: 10.1038/msb.2011.75
Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).
pubmed: 27166375
pmcid: 4987940
doi: 10.1093/nar/gkw408