Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
26 Jun 2024
Historique:
received: 11 04 2024
accepted: 10 06 2024
medline: 27 6 2024
pubmed: 27 6 2024
entrez: 26 6 2024
Statut: epublish

Résumé

Borgs are huge extrachromosomal elements (ECE) of anaerobic methane-consuming "Candidatus Methanoperedens" archaea. Here, we used nanopore sequencing to validate published complete genomes curated from short reads and to reconstruct new genomes. 13 complete and four near-complete linear genomes share 40 genes that define a largely syntenous genome backbone. We use these conserved genes to identify new Borgs from peatland soil and to delineate Borg phylogeny, revealing two major clades. Remarkably, Borg genes encoding nanowire-like electron-transferring cytochromes and cell surface proteins are more highly expressed than those of host Methanoperedens, indicating that Borgs augment the Methanoperedens activity in situ. We reconstructed the first complete 4.00 Mbp genome for a Methanoperedens that is inferred to be a Borg host and predicted its methylation motifs, which differ from pervasive TC and CC methylation motifs of the Borgs. Thus, methylation may enable Methanoperedens to distinguish their genomes from those of Borgs. Very high Borg to Methanoperedens ratios and structural predictions suggest that Borgs may be capable of encapsulation. The findings clearly define Borgs as a distinct class of ECE with shared genomic signatures, establish their diversification from a common ancestor with genetic inheritance, and raise the possibility of periodic existence outside of host cells.

Identifiants

pubmed: 38926353
doi: 10.1038/s41467-024-49548-8
pii: 10.1038/s41467-024-49548-8
doi:

Substances chimiques

Methane OP0UW79H66

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5414

Informations de copyright

© 2024. The Author(s).

Références

Al-Shayeb, B. et al. Borgs are giant genetic elements with potential to expand metabolic capacity. Nature 610, 731–736 (2022).
pubmed: 36261517 pmcid: 9605863 doi: 10.1038/s41586-022-05256-1
Chen, L.-X., Anantharaman, K., Shaiber, A., Eren, A. M. & Banfield, J. F. Accurate and complete genomes from metagenomes. Genome Res. 30, 315–333 (2020).
pubmed: 32188701 pmcid: 7111523 doi: 10.1101/gr.258640.119
Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).
pubmed: 23892779 doi: 10.1038/nature12375
Arshad, A. et al. A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by methanoperedens-like archaea. Front. Microbiol. 6, 1423 (2015).
pubmed: 26733968 pmcid: 4683180 doi: 10.3389/fmicb.2015.01423
McIlroy, S. J. et al. Anaerobic methanotroph “Candidatus Methanoperedens nitroreducens” has a pleomorphic life cycle. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01292-9 . (2023).
Schoelmerich, M. C., Sachdeva, R., West-Roberts, J., Waldburger, L. & Banfield, J. F. Tandem repeats in giant archaeal Borg elements undergo rapid evolution and create new intrinsically disordered regions in proteins. PLoS Biol. 21, e3001980 (2023).
pubmed: 36701369 pmcid: 9879509 doi: 10.1371/journal.pbio.3001980
van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).
pubmed: 24773235 pmcid: 4095912 doi: 10.1021/cr400525m
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Jankevicius, G., Ariza, A., Ahel, M. & Ahel, I. The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. Mol. Cell 64, 1109–1116 (2016).
pubmed: 27939941 pmcid: 5179494 doi: 10.1016/j.molcel.2016.11.014
Weller, S. K. & Coen, D. M. Herpes simplex viruses: mechanisms of DNA replication. Cold Spring Harb. Perspect. Biol. 4, a013011 (2012).
pubmed: 22952399 pmcid: 3428768 doi: 10.1101/cshperspect.a013011
Burroughs, A. M., Zhang, D., Schäffer, D. E., Iyer, L. M. & Aravind, L. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res. 43, 10633–10654 (2015).
pubmed: 26590262 pmcid: 4678834 doi: 10.1093/nar/gkv1267
Amitsur, M., Levitz, R. & Kaufmann, G. Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. EMBO J. 6, 2499–2503 (1987).
pubmed: 2444436 pmcid: 553660 doi: 10.1002/j.1460-2075.1987.tb02532.x
Griffith, E. C. et al. Ureadepsipeptides as ClpP activators. ACS Infect. Dis. 5, 1915–1925 (2019).
pubmed: 31588734 pmcid: 6916429 doi: 10.1021/acsinfecdis.9b00245
Boccitto, M. & Wolin, S. L. Ro60 and Y RNAs: structure, functions, and roles in autoimmunity. Crit. Rev. Biochem. Mol. Biol. 54, 133–152 (2019).
pubmed: 31084369 pmcid: 6542706 doi: 10.1080/10409238.2019.1608902
Liang, Q. et al. Structure and activity of a bacterial defense-associated 3’−5’ exonuclease. Protein Sci. 31, e4374 (2022).
pubmed: 35762727 pmcid: 9214754 doi: 10.1002/pro.4374
Fromme, J. C. & Verdine, G. L. Structure of a trapped endonuclease III-DNA covalent intermediate. EMBO J. 22, 3461–3471 (2003).
pubmed: 12840008 pmcid: 165637 doi: 10.1093/emboj/cdg311
Wang, P., Selvadurai, K. & Huang, R. H. Reconstitution and structure of a bacterial Pnkp1-Rnl-Hen1 RNA repair complex. Nat. Commun. 6, 6876 (2015).
pubmed: 25882814 doi: 10.1038/ncomms7876
Bailly, V., Sung, P., Prakash, L. & Prakash, S. DNA.RNA helicase activity of RAD3 protein of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88, 9712–9716 (1991).
pubmed: 1719538 pmcid: 52789 doi: 10.1073/pnas.88.21.9712
Fülöp, A., Béres, R., Tengölics, R., Rákhely, G. & Kovács, K. L. Relationship between PHA and hydrogen metabolism in the purple sulfur phototrophic bacterium Thiocapsa roseopersicina BBS. Int. J. Hydrog. Energy 37, 4915–4924 (2012).
doi: 10.1016/j.ijhydene.2011.12.019
Bamford, D. H. et al. Constituents of SH1, a novel lipid-containing virus infecting the halophilic euryarchaeon Haloarcula hispanica. J. Virol. 79, 9097–9107 (2005).
pubmed: 15994804 pmcid: 1168735 doi: 10.1128/JVI.79.14.9097-9107.2005
Santos-Pérez, I. et al. Structural basis for assembly of vertical single β-barrel viruses. Nat. Commun. 10, 1184 (2019).
pubmed: 30862777 pmcid: 6414509 doi: 10.1038/s41467-019-08927-2
Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).
pubmed: 33349699 doi: 10.1038/s41587-020-00774-7
Camargo, A. P. et al. You can move, but you can’t hide: identification of mobile genetic elements with geNomad. bioRxiv https://doi.org/10.1101/2023.03.05.531206 . (2023).
Vellani, T. S. & Myers, R. S. Bacteriophage SPP1 Chu is an alkaline exonuclease in the SynExo family of viral two-component recombinases. J. Bacteriol. 185, 2465–2474 (2003).
pubmed: 12670970 pmcid: 152610 doi: 10.1128/JB.185.8.2465-2474.2003
Weidner-Glunde, M., Mariggiò, G. & Schulz, T. F. Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen: replicating and shielding viral DNA during viral persistence. J. Virol. 91, e01083-16 (2017).
Grady, L. M. et al. The exonuclease activity of herpes simplex virus 1 UL12 is required for production of viral DNA that can be packaged to produce infectious virus. J. Virol. 91, e01380-17 (2017).
Okura, T., Taneno, A. & Oishi, E. Cell-to-cell transmission of turkey herpesvirus in chicken embryo cells via tunneling nanotubes. Avian Dis. 65, 335–339 (2021).
pubmed: 34427404 doi: 10.1637/aviandiseases-D-21-00022
Schoelmerich, M. C. et al. A widespread group of large plasmids in methanotrophic Methanoperedens archaea. Nat. Commun. 13, 1–11 (2022).
doi: 10.1038/s41467-022-34588-9
Xiang, X. et al. Sulfolobus tengchongensis spindle-shaped virus STSV1: virus-host interactions and genomic features. J. Virol. 79, 8677–8686 (2005).
pubmed: 15994761 pmcid: 1168784 doi: 10.1128/JVI.79.14.8677-8686.2005
Hoelzer, K., Shackelton, L. A. & Parrish, C. R. Presence and role of cytosine methylation in DNA viruses of animals. Nucleic Acids Res. 36, 2825–2837 (2008).
pubmed: 18367473 pmcid: 2396429 doi: 10.1093/nar/gkn121
Gu, Y. et al. Structure of Geobacter cytochrome OmcZ identifies mechanism of nanowire assembly and conductivity. Nat. Microbiol. 8, 284–298 (2023).
pubmed: 36732469 pmcid: 9999484 doi: 10.1038/s41564-022-01315-5
Yalcin, S. E. et al. Electric field stimulates production of highly conductive microbial OmcZ nanowires. Nat. Chem. Biol. 16, 1136–1142 (2020).
pubmed: 32807967 pmcid: 7502555 doi: 10.1038/s41589-020-0623-9
Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).
pubmed: 26490622 doi: 10.1038/nature15733
Baquero, D. P. et al. Extracellular cytochrome nanowires appear to be ubiquitous in prokaryotes. Cell 186, 2853–2864.e8 (2023).
Ouboter, H. T. et al. Mechanisms of extracellular electron transfer in anaerobic methanotrophic archaea. Nat. Commun. 15, 1477 (2024).
pubmed: 38368447 pmcid: 10874420 doi: 10.1038/s41467-024-45758-2
Wilson, R. M. et al. Soil metabolome response to whole-ecosystem warming at the spruce and peatland responses under changing environments experiment. Proc. Natl. Acad. Sci. USA. 118, e2004192118 (2021).
Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. https://www.osti.gov/biblio/1241166-bbmap-fast-accurate-splice-aware-aligner (2014).
Joshi, N. A., Fass, J. & Others. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33)[Software] https://github.com/najoshi/sickle (2011).
Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).
pubmed: 22495754 doi: 10.1093/bioinformatics/bts174
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinforma. 70, e102 (2020).
doi: 10.1002/cpbi.102
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).
pubmed: 20211023 pmcid: 2848648 doi: 10.1186/1471-2105-11-119
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
pubmed: 20709691 doi: 10.1093/bioinformatics/btq461
Fastp: an ultra-fast all-in-one FASTQ preprocessor (QC/Adapters/Trimming/Filtering/Splitting/Merging…). https://github.com/OpenGene/fastp (Github).
Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb. Genom. 3, e000132 (2017).
pubmed: 29177090 pmcid: 5695209
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242 pmcid: 6137996 doi: 10.1093/bioinformatics/bty191
Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).
pubmed: 33020656 pmcid: 10699202 doi: 10.1038/s41592-020-00971-x
Aury, J.-M. & Istace, B. Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genom. Bioinform. 3, lqab034 (2021).
pubmed: 33987534 pmcid: 8092372 doi: 10.1093/nargab/lqab034
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Brown, C. T., Olm, M. R., Thomas, B. C. & Banfield, J. F. Measurement of bacterial replication rates in microbial communities. Nat. Biotechnol. 34, 1256–1263 (2016).
pubmed: 27819664 pmcid: 5538567 doi: 10.1038/nbt.3704
Mirdita, M., Ovchinnikov, S. & Steinegger, M. ColabFold - Making protein folding accessible to all. bioRxiv https://doi.org/10.1101/2021.08.15.456425 . (2021).
van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01773-0 . (2023).
Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D. Biol. Crystallogr. 60, 2256–2268 (2004).
pubmed: 15572779 doi: 10.1107/S0907444904026460
DeLano, W. L. The PyMOL molecular graphics system. http://www.pymol.org (2002).
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
pubmed: 29035372 doi: 10.1038/nbt.3988
Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2011).
pubmed: 22198341 doi: 10.1038/nmeth.1818
Söding, J. Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 (2005).
pubmed: 15531603 doi: 10.1093/bioinformatics/bti125
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712 doi: 10.1016/S0022-2836(05)80360-2
Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).
pubmed: 32766782 pmcid: 7498326 doi: 10.1093/nar/gkaa621
OpenAI. GPT-4 Technical Report. arXiv https://arxiv.org/abs/2303.08774 (2023).
Nanodisco: a toolbox for discovering and exploiting multiple types of DNA methylation from individual bacteria and microbiomes using nanopore sequencing. https://github.com/fanglab/nanodisco (Github).
Gilchrist, C. L. M. & Chooi, Y.-H. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics https://doi.org/10.1093/bioinformatics/btab007 . (2021).
Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).
pubmed: 24288371 doi: 10.1093/nar/gkt1223
Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).
pubmed: 26083755 doi: 10.1038/nature14486
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
pubmed: 23193283 doi: 10.1093/nar/gks1219
Woodcroft et al. SingleM and Sandpiper: robust microbial taxonomic profiles from metagenomic data. bioRxiv https://www.biorxiv.org/content/10.1101/2024.01.30.578060v1 (2024).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
pubmed: 23329690 pmcid: 3603318 doi: 10.1093/molbev/mst010
Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).
pubmed: 20626897 pmcid: 3017758 doi: 10.1186/1471-2148-10-210
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
pubmed: 25371430 doi: 10.1093/molbev/msu300
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
pubmed: 29077904 doi: 10.1093/molbev/msx281
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).
pubmed: 27095192 pmcid: 4987883 doi: 10.1093/nar/gkw290
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
pubmed: 29722887 pmcid: 5967553 doi: 10.1093/molbev/msy096
Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).
pubmed: 30778233 doi: 10.1038/s41587-019-0036-z
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
pubmed: 21988835 pmcid: 3261699 doi: 10.1038/msb.2011.75
Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).
pubmed: 27166375 pmcid: 4987940 doi: 10.1093/nar/gkw408

Auteurs

Marie C Schoelmerich (MC)

Innovative Genomics Institute, University of California, Berkeley, CA, USA.
Department of Environmental Systems Sciences, ETH Zurich, 8092, Zurich, Switzerland.

Lynn Ly (L)

Oxford Nanopore Technologies Inc, New York, NY, USA.

Jacob West-Roberts (J)

Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.

Ling-Dong Shi (LD)

Innovative Genomics Institute, University of California, Berkeley, CA, USA.

Cong Shen (C)

Microbial Sciences Institute, Yale University, New Haven, CT, USA.
Deptartment of Molecular Biophysics and Biochemistry, Yale University, West Haven, CT, USA.

Nikhil S Malvankar (NS)

Microbial Sciences Institute, Yale University, New Haven, CT, USA.
Deptartment of Molecular Biophysics and Biochemistry, Yale University, West Haven, CT, USA.

Najwa Taib (N)

Institut Pasteur, Université de Paris cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France.

Simonetta Gribaldo (S)

Institut Pasteur, Université de Paris cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France.

Ben J Woodcroft (BJ)

Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia.

Christopher W Schadt (CW)

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Department of Microbiology, University of Tennessee, Knoxville, TN, USA.

Basem Al-Shayeb (B)

Innovative Genomics Institute, University of California, Berkeley, CA, USA.

Xiaoguang Dai (X)

Oxford Nanopore Technologies Inc, New York, NY, USA.

Christopher Mozsary (C)

Oxford Nanopore Technologies Inc, New York, NY, USA.

Scott Hickey (S)

Oxford Nanopore Technologies Inc, New York, NY, USA.

Christine He (C)

Oxford Nanopore Technologies Inc, New York, NY, USA.

John Beaulaurier (J)

Oxford Nanopore Technologies Inc, New York, NY, USA.

Sissel Juul (S)

Oxford Nanopore Technologies Inc, New York, NY, USA.

Rohan Sachdeva (R)

Innovative Genomics Institute, University of California, Berkeley, CA, USA.

Jillian F Banfield (JF)

Innovative Genomics Institute, University of California, Berkeley, CA, USA. jbanfield@berkeley.edu.
Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA. jbanfield@berkeley.edu.
Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia. jbanfield@berkeley.edu.
Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. jbanfield@berkeley.edu.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Populus Soil Microbiology Soil Microbiota Fungi
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Classifications MeSH