Genome-wide survey of KT/HAK/KUP genes in the genus Citrullus and analysis of their involvement in K


Journal

BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258

Informations de publication

Date de publication:
05 Sep 2024
Historique:
received: 15 06 2024
accepted: 14 08 2024
medline: 6 9 2024
pubmed: 6 9 2024
entrez: 5 9 2024
Statut: epublish

Résumé

The KT/HAK/KUP is the largest K 14 KT/HAK/KUP genes were identified in the genomes of each of seven Citrullus species. These KT/HAK/KUPs in watermelon were unevenly distributed across seven chromosomes. Segmental duplication is the primary driving force behind the expansion of the KT/HAK/KUP family, subjected to purifying selection during domestication (Ka/Ks < 1), and all KT/HAK/KUPs exhibit conserved motifs and could be phylogenetically classified into four groups. The promoters of KT/HAK/KUPs contain numerous cis-regulatory elements related to plant growth and development, phytohormone response, and stress response. Under K KT/HAK/KUP genes in watermelon were systematically identified and analyzed at the pangenome level and provide a foundation for understanding the classification and functions of the KT/HAK/KUPs in watermelon plants.

Sections du résumé

BACKGROUND BACKGROUND
The KT/HAK/KUP is the largest K
RESULTS RESULTS
14 KT/HAK/KUP genes were identified in the genomes of each of seven Citrullus species. These KT/HAK/KUPs in watermelon were unevenly distributed across seven chromosomes. Segmental duplication is the primary driving force behind the expansion of the KT/HAK/KUP family, subjected to purifying selection during domestication (Ka/Ks < 1), and all KT/HAK/KUPs exhibit conserved motifs and could be phylogenetically classified into four groups. The promoters of KT/HAK/KUPs contain numerous cis-regulatory elements related to plant growth and development, phytohormone response, and stress response. Under K
CONCLUSIONS CONCLUSIONS
KT/HAK/KUP genes in watermelon were systematically identified and analyzed at the pangenome level and provide a foundation for understanding the classification and functions of the KT/HAK/KUPs in watermelon plants.

Identifiants

pubmed: 39237905
doi: 10.1186/s12864-024-10712-5
pii: 10.1186/s12864-024-10712-5
doi:

Substances chimiques

Plant Proteins 0
Potassium RWP5GA015D
Cation Transport Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

836

Subventions

Organisme : Huai'an Natural Science Research Project
ID : HABL202228
Organisme : Seed Industry Vitalization Research Projects of Jiangsu Province
ID : JBGS[2021]072
Organisme : China Agriculture Research System of MOF and MARA
ID : CARS-25

Informations de copyright

© 2024. The Author(s).

Références

Véry AA, Hervé S. Molecular mechanisms and regulation of K
pubmed: 14503004 doi: 10.1146/annurev.arplant.54.031902.134831
Ahammed GJ, Chen Y, Liu C, Yang Y. Light regulation of potassium in plants. Plant Physiol Bioch. 2022;170:316–24.
doi: 10.1016/j.plaphy.2021.12.019
Epstein E, Rains DW, Elzam OE. Resolution of dual mechanisms of potassium absorption by barley roots. PNAS. 1963;49(5):684–92.
pubmed: 16591089 pmcid: 299954 doi: 10.1073/pnas.49.5.684
Isabelle C, Cécile L, Martin B, Hervé S. Molecular mechanisms involved in plant adaptation to low K
doi: 10.1093/jxb/ert402
Song Z, Yang S, Zhu H, Jin M, Su Y. Heterologous expression of an alligatorweed high-affinity potassium transporter gene enhances salinity tolerance in Arabidopsis thaliana. Am J Bot. 2014;101:840–50.
pubmed: 24824834 doi: 10.3732/ajb.1400155
Ashley MK, Grant M, Grabov A. Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot. 2006;57(2):425–36.
pubmed: 16364949 doi: 10.1093/jxb/erj034
Chen G, Liu C, Gao Z, Zhang Y, Jiang H, Zhu L, Ren D, Yu L, Xu G, Qian Q. OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice. Front Plant Sci. 2017;8:1885.
pubmed: 29163608 pmcid: 5671996 doi: 10.3389/fpls.2017.01885
Liu S, Wu B, Xie Y, Zheng S, Xie J, Wang W, Xiang D, Li C. Genome-wide analysis of HAK/KUP/KT potassium transporter genes in banana (Musa Acuminata L.) and their tissue-specific expression profiles under potassium stress. Plant Growth Regul. 2022;97:51–60.
doi: 10.1007/s10725-021-00793-7
Yurtseven E, Kesmez GD, Ünlükara A. The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central anatolian tomato species (Lycopersicon Esculantum). Agr Water Manage. 2005;78(1):28–35.
Ahn SJ, Shin R, Schachtman DP. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K
pubmed: 14988478 pmcid: 389937 doi: 10.1104/pp.103.034660
Gupta M, Qiu X, Wang L, Xie W, Zhang C, Xiong L, Lian X, Zhang Q. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza Sativa). Mol Genet Genomics. 2008;280:437–52.
pubmed: 18810495 doi: 10.1007/s00438-008-0377-7
Zhang Z, Zhang J, Chen Y, Li R, Wang H, Wei J. Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea Mays L). Mol Biol Rep. 2012;39:8465–73.
pubmed: 22711305 doi: 10.1007/s11033-012-1700-2
Hyun TK, Rim Y, Kim E, Kim JS. Genome-wide and molecular evolution analyses of the KT/HAK/KUP family in tomato (Solanum Lycopersicum L). Genes Genom. 2014;36:365–74.
doi: 10.1007/s13258-014-0174-0
Wang Y, Lü J, Chen D, Zhang J, Qi K, Cheng R, Zhang H, Zhang S. Genome-wide identification, evolution, and expression analysis of the KT/HAK/KUP family in pear. Genome. 2018;61:755–65.
pubmed: 30130425 doi: 10.1139/gen-2017-0254
Cheng X, Liu X, Mao W, Zhang X, Chen S, Zhan K, Bi H, Xu H. Genome-wide identification and analysis of HAK/KUP/KT potassium transporters gene family in wheat (Triticum Aestivum L). Int J Mol Sci. 2018;19:3969.
pubmed: 30544665 pmcid: 6321448 doi: 10.3390/ijms19123969
Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 2001;126(4):1646–67.
pubmed: 11500563 pmcid: 117164 doi: 10.1104/pp.126.4.1646
Li P, Luo T, Pu X, Zhou Y, Yu J, Liu L. Plant transporters: roles in stress responses and effects on growth and development. Plant Growth Regul. 2021;93:253–66.
doi: 10.1007/s10725-020-00684-3
Rigas S, Ditengou FA, Ljung K, Daras G, Tietz O, Palme K, Hatzopoulos P. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex. New Phytol 2103; 197:1130–41.
Young JP, Markus G, Julian IS, Myeon HC. High-affinity K
doi: 10.1104/pp.110.154369
Han M, Wu W, Wu WH, Wang Y. Potassium transporter KUP7 is involved in K
pubmed: 26851373 doi: 10.1016/j.molp.2016.01.012
Chen G, Hu Q, Luo L, Yang T, Zhang S, Hu Y, Yu L, Xu G. Rice potassium transporter OSHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell Environ. 2015;38(12):2747–65.
pubmed: 26046301 doi: 10.1111/pce.12585
Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol. 2014;166(2):945–59.
pubmed: 25157029 pmcid: 4213120 doi: 10.1104/pp.114.246520
Yang T, Feng H, Zhang S, Xiao H, Hu Q, Chen G, Xuan W, Moran N, Murphy A, Yu L, Xu G. The potassium transporter OsHAK5 alters rice architecture via ATP-dependent transmembrane auxin fluxes. Plant Commun. 2020;1(5):100052.
pubmed: 33367257 pmcid: 7747981 doi: 10.1016/j.xplc.2020.100052
Boscari A, Clément M, Volkov V, Golldack D, Hybiak J, Miller AJ, Amtmann A, Fricke W. Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. Plant Cell Environ. 2009;32(12):1761–77.
pubmed: 19682291 doi: 10.1111/j.1365-3040.2009.02033.x
Cuin TA, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S. Assessing the role of root plasma membrane and tonoplast Na
pubmed: 21342209 doi: 10.1111/j.1365-3040.2011.02296.x
Liang M, Gao Y, Mao T, Zhang X, Zhang S, Zhang H, Song Z. Characterization and expression of KT/HAK/KUP transporter family genes in willow under potassium deficiency, drought, and salt stresses. BioMed Res Int. 2020; 2020:2690760.
Alexander G, Plant. KT/KUP/HAK potassium transporters: single family-multiple functions. Ann Bot. 2007;99(66):1035–41.
Li W, Xu G, Alli A, Yu L, Plant. HAK/KUP/KT K
pubmed: 28711523 doi: 10.1016/j.semcdb.2017.07.009
Huang Y, Cao H, Yang L, Chen C, Shabala L, Xiong M, Niu M, Liu J, Zheng Z, Zhou L, Peng Z, Bie Z, Shabala S. Tissue-specific respiratory burst oxidase homolog-dependent H
pubmed: 31290978 pmcid: 6812723 doi: 10.1093/jxb/erz328
Ankit A, Kamali S, Singh A. Genomic & structural diversity and functional role of potassium (K
pubmed: 35367275 doi: 10.1016/j.ijbiomac.2022.03.179
Yang T, Lu X, Wang Y, Xie Y, Ma J, Cheng X, Xia E, Wan X, Zhang Z. HAK/KUP/KT family potassium transporter genes are involved in potassium deficiency and stress responses in tea plants (Camellia sinensis L.): expression and functional analysis. BMC Genomics. 2020;21:556.
pubmed: 32791963 pmcid: 7430841 doi: 10.1186/s12864-020-06948-6
Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM. Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot. 2006;57(4):791–800.
pubmed: 16449377 doi: 10.1093/jxb/erj064
Rubio F, Nieves-Cordones M, Alemán F, Martínez V. Relative contribution of AtHAK5 and AtAKT1 to K
pubmed: 19000196 doi: 10.1111/j.1399-3054.2008.01168.x
Daras G, Rigas S, Tsitsekian D, Iacovides TA, Hatzopoulos P. Potassium transporter TRH1 subunits assemble regulating root-hair elongation autonomously from the cell fate determination pathway. Plant Sci. 2015;231:131–7.
pubmed: 25575998 doi: 10.1016/j.plantsci.2014.11.017
Wu S, Sun H, Gao L, Branham S, McGregor C, Renner SS, Xu Y, Kousik C, Wechter WP, Levi A, Fei Z. A Citrullus genus super-pangenome reveals extensive variations in wild and cultivated watermelons and sheds light on watermelon evolution and domestication. Plant Biotechnol J. 2023;21(10):1926–8.
pubmed: 37490004 pmcid: 10502741 doi: 10.1111/pbi.14120
Sun Y, Kou DR, Li Y, Ni JP, Wang J, Zhang YM, Wang QN, Jiang B, Wang X, Sun YX, Xu XT, Tan XJ, Zhang YJ, Kong XD. Pan-genome of Citrullus genus highlights the extent of presence/absence variation during domestication and selection. BMC Genomics. 2023;24:332.
pubmed: 37322453 pmcid: 10273549 doi: 10.1186/s12864-023-09443-w
Menezes F, de Andrade A, Bergamin RA, Moreira AC, de Souza AG. Productivity and quality of watermelon fruits as a function of doses potassium in the Western Amazon. Sci Electron Archives. 2021;14(11):1–6.
doi: 10.36560/141120211458
Zhang Y, Zhao M, Tan J, Huang M, Chu X, Li Y, Han X, Fang T, Tian Y, Jarret R, Lu D, Chen Y, Xue L, Li X, Qin G, Li B, Sun Y, Deng XW, Deng Y, Zhang X, He H. Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding. Nat Genet. 2024. https://doi.org/10.1038/s41588-024-01823-6 .
doi: 10.1038/s41588-024-01823-6 pubmed: 39210046 pmcid: 11319210
Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 2023;51:587–92.
doi: 10.1093/nar/gkad359
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49.
pubmed: 22217600 pmcid: 3326336 doi: 10.1093/nar/gkr1293
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.
pubmed: 19541911 pmcid: 2752132 doi: 10.1101/gr.092759.109
Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genom Proteom Bioinform. 2010;8(1):77–80.
doi: 10.1016/S1672-0229(10)60008-3
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2
pubmed: 11846609 doi: 10.1006/meth.2001.1262
Liu J, Liu J, Cui M, Chen X, Liu J, Chen J, Chen A, Xu G. Investigate the effect of potassium on nodule symbiosis and uncover an HAK/KUP/KT member, GmHAK5, strongly responsive to root nodulation in soybean. J Plant Biol. 2022; 65(6):459-471.
Cheng R, Cheng Y, Lü J, Chen J, Wang Y, Zhang S, Zhang H. The gene PbTMT4 from pear (Pyrus bretschneideri) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit. Physiol Plantarum. 2018; 164(3):307–319.
Guo H, Tan J, Jiao Y, Huang B, Ma R, Ramakrishnan M, Qi G, Zhang Z. Genome-wide identification and expression analysis of the HAK/KUP/KT gene family in Moso bamboo. Front Plant Sci. 2024;15:1331710.
pubmed: 38595761 pmcid: 11002169 doi: 10.3389/fpls.2024.1331710
Gimode W, Bao K, Fei Z, McGregor C. QTL associated with gummy stem blight resistance in watermelon. Theor Appl Genet. 2021;134(2):573–84.
pubmed: 33135096 doi: 10.1007/s00122-020-03715-9
Deng Y, Liu S, Zhang Y, Tan J, Li X, Chu X, Xu B, Tian Y, Sun Y, Li B, Xu Y, Deng XW, He H, Zhang X. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Mol Plant. 2022;15(8):1268–84.
pubmed: 35746868 doi: 10.1016/j.molp.2022.06.010
Hasanuzzaman M, Bhuyan MHMB, Nahar K, Hossain MS, Mahmud JA, Hossen MS, Masud AAC. Moumita, Fujita M. Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy. 2018;8(3):31.
doi: 10.3390/agronomy8030031
Fan M, Huang Y, Zhong Y, Kong Q, Xie J, Niu M, Xu Y, Bie Z. Comparative transcriptome profiling of potassium starvation responsiveness in two contrasting watermelon genotypes. Planta. 2014;239:397–410.
pubmed: 24185372 doi: 10.1007/s00425-013-1976-z
Ahmad I, Maathuis FJ. Cellular and tissue distribution of potassium: physiological relevance, mechanisms and regulation. J Plant Physiol. 2014;171(9):708–14.
pubmed: 24810768 doi: 10.1016/j.jplph.2013.10.016
Nimmakayala P, Natarajan P, Lopez-Ortiz C, Dutta SK, Levi A, Reddy UK. Population Genomics of Sweet Watermelon. Population Genomics. Cham: Springer; 2022. pp. 856–901.
Santa-Marıa GE, Oliferuk S, Moriconi JI. KT-HAK-KUP transporters in major terrestrial photosynthetic organisms: a twenty years tale. J Plant Physiol. 2018;226:77–90.
pubmed: 29704646 doi: 10.1016/j.jplph.2018.04.008
Wei J, Tiika RJ, Cui G, Ma Y, Yang H, Duan H. Transcriptome-wide identification and expression analysis of the KT/HAK/KUP family in Salicornia europaea L. under varied NaCl and KCl treatments. PeerJ. 2022;10:e12989.
pubmed: 35261820 pmcid: 8898550 doi: 10.7717/peerj.12989
Maher C, Stein L, Ware D. Evolution of Arabidopsis microRNA families through duplication events. Genome Res. 2006;16:510–9.
pubmed: 16520461 pmcid: 1457037 doi: 10.1101/gr.4680506
Hashemipetroudi SH, Arab M, Heidari P, Kuhlmann M. Genome-wide analysis of the laccase (LAC) gene family in Aeluropus littoralis: a focus on identification, evolution and expression patterns in response to abiotic stresses and ABA treatment. Front Plant Sci. 2023;14:1112354.
pubmed: 36938021 pmcid: 10014554 doi: 10.3389/fpls.2023.1112354
Yaghobi M, Heidari P. Genome-wide analysis of aquaporin gene family in Triticum turgidum and its expression profile in response to salt stress. Genes (Basel). 2023;14(1):202.
pubmed: 36672943 doi: 10.3390/genes14010202
Guo S, Zhao S, Sun H, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y, Zhang J, Lu X, Zhang H, Shang J, Gong G, Wen C, He N, Tian S, Li M, Liu J, Wang Y, Zhu Y, Jarret R, Levi A, Zhang X, Huang S, Fei Z, Liu W, Xu Y. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat Genet. 2019;51(11):1616–23.
pubmed: 31676863 doi: 10.1038/s41588-019-0518-4
Cvijovic I, Good BH, Desai MM. The effect of strong purifying selection on genetic diversity. Genetics. 2018;209(4):1235–78.
pubmed: 29844134 pmcid: 6063222 doi: 10.1534/genetics.118.301058
Gierth M, Mäser P, Schroeder JI. The potassium transporter AtHAK5 functions in K
pubmed: 15734909 pmcid: 1065410 doi: 10.1104/pp.104.057216
Ragel P, Ródenas R, García-Martín E, Andrés Z, Villalta I, Nieves-Cordones M, Rivero RM, Martínez V, Pardo JM, Quintero FJ, Rubio F. The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K
pubmed: 26474642 pmcid: 4677917
Hernandez-Garcia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 2014;217:109–19.
pubmed: 24467902 doi: 10.1016/j.plantsci.2013.12.007

Auteurs

Rui Cheng (R)

College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, 150006, China.
Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, 150006, China.
Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, Jiangsu, 223001, China.

Zhengxiang Zhao (Z)

College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, 150006, China.
Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, 150006, China.

Yan Tang (Y)

Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China.

Yan Gu (Y)

Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, Jiangsu, 223001, China.

Guodong Chen (G)

Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China.

Yudong Sun (Y)

Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, Jiangsu, 223001, China. sunyudong@jaas.ac.cn.

Xuezheng Wang (X)

College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, 150006, China. wangxuezheng@neau.edu.cn.
Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, 150006, China. wangxuezheng@neau.edu.cn.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH