Genomic identification and expression profiling of DMP genes in oat (Avena sativa) elucidate their responsiveness to seed aging.


Journal

BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258

Informations de publication

Date de publication:
16 Sep 2024
Historique:
received: 27 03 2024
accepted: 28 08 2024
medline: 17 9 2024
pubmed: 17 9 2024
entrez: 16 9 2024
Statut: epublish

Résumé

The Domain of unknown function 679 membrane protein (DMP) family, which is unique to plants, plays a crucial role in reproductive development, stress response and aging. A comprehensive study was conducted to identify the DMP gene members of oat (Avena sativa) and to investigate their structural features and tissue-specific expression profiles. Utilizing whole genome and transcriptome data, we analyzed the physicochemical properties, gene structure, cis-acting elements, phylogenetic relationships, conserved structural (CS) domains, CS motifs and expression patterns of the AsDMP family in A. sativa. The DMP family genes of A. sativa were distributed across 17 chromosomal scaffolds, encompassing a total of 33 members. Based on phylogenetic relationships, the AsDMP genes were classified into five distinct subfamilies. The gene structure also suggests that A. sativa may have undergone an intron loss event during its evolution. Covariance analysis indicates that genome-wide duplication and segmental duplication may be the major contributor to the expansion of the AsDMP gene family. Ka/Ks selective pressure analysis of the AsDMP gene family suggests that DMP gene pairs are generally conserved over evolutionary time. The upstream promoters of these genes contain several cis-acting elements, suggesting a potential role in abiotic stress responses and hormone induction. Transcriptome data revealed that the expression patterns of the DMP genes are involved in tissue and organ development. In this study, the AsDMP genes (AsDMP1, AsDMP19, and AsDMP22) were identified as potential regulators of seed senescence in A. sativa. These genes could serve as candidates for breeding studies focused on seed longevity and anti-aging germplasm in A. sativa. The study provides valuable insights into the regulatory mechanisms of the AsDMP gene family in the aging process of A. sativa germplasm and offers theoretical support for further function investigation into the functions of AsDMP genes and the molecular mechanisms underlying seed anti-aging. This study identified the AsDMP genes as being involved in the aging process of A. sativa seeds, marking the first report on the potential role of DMP genes in seed aging for A. sativa.

Sections du résumé

BACKGROUND BACKGROUND
The Domain of unknown function 679 membrane protein (DMP) family, which is unique to plants, plays a crucial role in reproductive development, stress response and aging. A comprehensive study was conducted to identify the DMP gene members of oat (Avena sativa) and to investigate their structural features and tissue-specific expression profiles. Utilizing whole genome and transcriptome data, we analyzed the physicochemical properties, gene structure, cis-acting elements, phylogenetic relationships, conserved structural (CS) domains, CS motifs and expression patterns of the AsDMP family in A. sativa.
RESULTS RESULTS
The DMP family genes of A. sativa were distributed across 17 chromosomal scaffolds, encompassing a total of 33 members. Based on phylogenetic relationships, the AsDMP genes were classified into five distinct subfamilies. The gene structure also suggests that A. sativa may have undergone an intron loss event during its evolution. Covariance analysis indicates that genome-wide duplication and segmental duplication may be the major contributor to the expansion of the AsDMP gene family. Ka/Ks selective pressure analysis of the AsDMP gene family suggests that DMP gene pairs are generally conserved over evolutionary time. The upstream promoters of these genes contain several cis-acting elements, suggesting a potential role in abiotic stress responses and hormone induction. Transcriptome data revealed that the expression patterns of the DMP genes are involved in tissue and organ development. In this study, the AsDMP genes (AsDMP1, AsDMP19, and AsDMP22) were identified as potential regulators of seed senescence in A. sativa. These genes could serve as candidates for breeding studies focused on seed longevity and anti-aging germplasm in A. sativa. The study provides valuable insights into the regulatory mechanisms of the AsDMP gene family in the aging process of A. sativa germplasm and offers theoretical support for further function investigation into the functions of AsDMP genes and the molecular mechanisms underlying seed anti-aging.
CONCLUSIONS CONCLUSIONS
This study identified the AsDMP genes as being involved in the aging process of A. sativa seeds, marking the first report on the potential role of DMP genes in seed aging for A. sativa.

Identifiants

pubmed: 39285326
doi: 10.1186/s12864-024-10743-y
pii: 10.1186/s12864-024-10743-y
doi:

Substances chimiques

Plant Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

863

Subventions

Organisme : National Natural Science Foundation of China
ID : 32360344
Organisme : Key Laboratory of Grassland Ecosystem Ministry of Education Project
ID : KLGE2022-16
Organisme : Gansu Agricultural University Youth Tutor Fund
ID : GAU-QDFC-2023-01
Organisme : Tibet Autonomous Region Science and Technology Project
ID : XZ202201ZY0014N
Organisme : National Key Research and Development Program Foundation
ID : 2022YFD1100502

Informations de copyright

© 2024. The Author(s).

Références

Xicluna J, Lacombe B, Dreyer I, Alcon C, Jeanguenin L, Sentenac H, et al. Increased functional diversity of Plant K + channels by preferential heteromerization of the Shaker-like subunits AKT2 and KAT2. J Biol Chem. 2007;282:486–94. https://doi.org/10.1074/jbc.M607607200 .
doi: 10.1074/jbc.M607607200 pubmed: 17085433
Yamada K, Osakabe Y, Mizoi J, Nakashima K, Fujita Y, Shinozaki K, et al. Functional analysis of an Arabidopsis thaliana Abiotic stress-inducible facilitated diffusion transporter for Monosaccharides. J Biol Chem. 2010;285:1138–46. https://doi.org/10.1074/jbc.M109.054288 .
doi: 10.1074/jbc.M109.054288 pubmed: 19901034
Chen Y, Weckwerth W. Mass Spectrometry untangles Plant membrane protein signaling networks. Trends Plant Sci. 2020;25:930–44. https://doi.org/10.1016/j.tplants.2020.03.013 .
doi: 10.1016/j.tplants.2020.03.013 pubmed: 32359835
Chen Y, Heazlewood JL. Organellar Proteomic profiling to analyze membrane trafficking pathways. Trends Plant Sci. 2021;26:299–300. https://doi.org/10.1016/j.tplants.2020.11.008 .
doi: 10.1016/j.tplants.2020.11.008 pubmed: 33309103
Cyprys P, Lindemeier M, Sprunck S. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins. Nat Plants. 2019;5:253–7. https://doi.org/10.1038/s41477-019-0382-3 .
doi: 10.1038/s41477-019-0382-3 pubmed: 30850817
Kasaras A, Kunze R. Expression, localisation and phylogeny of a novel family of plant-specific membrane proteins. Plant Biol. 2010;12:140–52. https://doi.org/10.1111/j.1438-8677.2010.00381.x .
doi: 10.1111/j.1438-8677.2010.00381.x pubmed: 20712629
Kasaras A, Melzer M, Kunze R. Arabidopsis senescence-associated protein DMP1 is involved in membrane remodeling of the ER and tonoplast. BMC Plant Biol. 2012;12:54. https://doi.org/10.1186/1471-2229-12-54 .
doi: 10.1186/1471-2229-12-54 pubmed: 22530652 pmcid: 3438137
Takahashi T, Mori T, Ueda K, Yamada L, Nagahara S, Higashiyama T, et al. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants. Development. 2018;145:dev170076. https://doi.org/10.1242/dev.170076 .
doi: 10.1242/dev.170076 pubmed: 30487178
Nawade B, Bosamia TC, Lee JH, Jang JH, Lee OR. Genome-wide characterization of the soybean DOMAIN OF UNKNOWN FUNCTION 679 membrane protein gene family highlights their potential involvement in growth and stress response. Front Plant Sci. 2023;14:1216082. https://doi.org/10.3389/fpls.2023.1216082 .
doi: 10.3389/fpls.2023.1216082 pubmed: 37745995 pmcid: 10514519
Van Der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge U-I, Kunze R. Transcription Analysis of Arabidopsis Membrane Transporters and hormone pathways during Developmental and Induced Leaf Senescence. Plant Physiol. 2006;141:776–92. https://doi.org/10.1104/pp.106.079293 .
doi: 10.1104/pp.106.079293 pubmed: 16603661 pmcid: 1475451
Kasaras A. Characterization of the senescence-associated membrane protein DMP1 and the DMP family in Arabidopsis thaliana. 2013. https://doi.org/10.17169/refubium-16407
Jiang Y, Liang G, Yang S, Yu D, Arabidopsis. WRKY57 functions as a node of convergence for Jasmonic acid– and auxin-mediated signaling in Jasmonic Acid–Induced Leaf Senescence. Plant Cell. 2014;26:230–45. https://doi.org/10.1105/tpc.113.117838 .
doi: 10.1105/tpc.113.117838 pubmed: 24424094 pmcid: 3963572
Kasaras A, Kunze R. Dual-targeting of Arabidopsis DMP1 isoforms to the tonoplast and the plasma membrane. PLoS ONE. 2017;12:e0174062. https://doi.org/10.1371/journal.pone.0174062 .
doi: 10.1371/journal.pone.0174062 pubmed: 28384172 pmcid: 5383025
Zhong Y, Chen B, Li M, Wang D, Jiao Y, Qi X, et al. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nat Plants. 2020;6:466–72. https://doi.org/10.1038/s41477-020-0658-7 .
doi: 10.1038/s41477-020-0658-7 pubmed: 32415294
Zhong Y, Liu C, Qi X, Jiao Y, Wang D, Wang Y, et al. Mutation of ZmDMP enhances haploid induction in maize. Nat Plants. 2019;5:575–80. https://doi.org/10.1038/s41477-019-0443-7 .
doi: 10.1038/s41477-019-0443-7 pubmed: 31182848
Zhong Y, Wang Y, Chen B, Liu J, Wang D, Li M, et al. Establishment of a dmp based maternal haploid induction system for polyploid Brassica napus and Nicotiana tabacum. J Integr Plant Biol. 2022;64:1281–94. https://doi.org/10.1111/jipb.13244 .
doi: 10.1111/jipb.13244 pubmed: 35249255
Zhu S, Wang X, Chen W, Yao J, Li Y, Fang S, et al. Cotton DMP gene family: characterization, evolution, and expression profiles during development and stress. Int J Biol Macromol. 2021;183:1257–69. https://doi.org/10.1016/j.ijbiomac.2021.05.023 .
doi: 10.1016/j.ijbiomac.2021.05.023 pubmed: 33965485
Olvera-Carrillo Y, Van Bel M, Van Hautegem T, Fendrych M, Van Durme M, Huysmans M et al. A conserved core of PCD indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiol. 2015;:pp.00769.2015. https://doi.org/10.1104/pp.15.00769
Gao Z, Daneva A, Salanenka Y, Van Durme M, Huysmans M, Lin Z, et al. KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis. Nat Plants. 2018;4:365–75. https://doi.org/10.1038/s41477-018-0160-7 .
doi: 10.1038/s41477-018-0160-7 pubmed: 29808023 pmcid: 7116356
Sun S, Ma W, Mao P. Genomic identification and expression profiling of WRKY genes in alfalfa (Medicago sativa) elucidate their responsiveness to seed vigor. BMC Plant Biol. 2023;23:568. https://doi.org/10.1186/s12870-023-04597-x .
doi: 10.1186/s12870-023-04597-x pubmed: 37968658 pmcid: 10652462
Sun M, Sun S, Jia Z, Ma W, Mao C, Ou C, et al. Genome-wide analysis and expression profiling of Glutathione Reductase Gene Family in Oat (Avena sativa) indicate their responses to abiotic stress during seed imbibition. Int J Mol Sci. 2022;23:11650. https://doi.org/10.3390/ijms231911650 .
doi: 10.3390/ijms231911650 pubmed: 36232950 pmcid: 9569478
Malviya R, Dey S, Pandey A, Gayen D. Genome-wide identification and expression pattern analysis of lipoxygenase genes of chickpea (Cicer arietinum L.) in response to accelerated aging. Gene. 2023;874:147482. https://doi.org/10.1016/j.gene.2023.147482 .
doi: 10.1016/j.gene.2023.147482 pubmed: 37187244
Jeevan Kumar SP, Rajendra Prasad S, Banerjee R, Thammineni C. Seed birth to death: dual functions of reactive oxygen species in seed physiology. Ann Bot. 2015;116:663–8. https://doi.org/10.1093/aob/mcv098 .
doi: 10.1093/aob/mcv098 pubmed: 26271119 pmcid: 4578000
Reiter R, Tan D, Rosales-Corral S, Galano A, Zhou X, Xu B. Mitochondria: Central Organelles for Melatonin′s antioxidant and anti-aging actions. Molecules. 2018;23:509. https://doi.org/10.3390/molecules23020509 .
doi: 10.3390/molecules23020509 pubmed: 29495303 pmcid: 6017324
Feng L, Zhu S, Zhang C, Bao Y, Feng X, He Y. Identification of Maize Kernel Vigor under different accelerated aging Times using Hyperspectral Imaging. Molecules. 2018;23:3078. https://doi.org/10.3390/molecules23123078 .
doi: 10.3390/molecules23123078 pubmed: 30477266 pmcid: 6321087
Liang L, Xie A, Yang H, Li N, Ma P, Wei S, et al. Quantitative Acetylome Analysis of Soft Wheat seeds during Artificial Ageing. Foods. 2022;11:3611. https://doi.org/10.3390/foods11223611 .
doi: 10.3390/foods11223611 pubmed: 36429203 pmcid: 9689531
He X, Bjørnstad Å. Diversity of north European oat analyzed by SSR, AFLP and DArT markers. Theor Appl Genet. 2012;125:57–70. https://doi.org/10.1007/s00122-012-1816-8 .
doi: 10.1007/s00122-012-1816-8 pubmed: 22350091
Zhang M-X, Bai R, Nan M, Ren W, Wang C-M, Shabala S, et al. Evaluation of salt tolerance of oat cultivars and the mechanism of adaptation to salinity. J Plant Physiol. 2022;273:153708. https://doi.org/10.1016/j.jplph.2022.153708 .
doi: 10.1016/j.jplph.2022.153708 pubmed: 35504119
Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon–intron structure. Proc Natl Acad Sci. 2012;109:1187–92. https://doi.org/10.1073/pnas.1109047109 .
doi: 10.1073/pnas.1109047109 pubmed: 22232673 pmcid: 3268293
Flagel LE, Wendel JF. Gene duplication and evolutionary novelty in plants. New Phytol. 2009;183:557–64. https://doi.org/10.1111/j.1469-8137.2009.02923.x .
doi: 10.1111/j.1469-8137.2009.02923.x pubmed: 19555435
Dai M, Zhou N, Zhang Y, Zhang Y, Ni K, Wu Z, et al. Genome-wide analysis of the SBT gene family involved in drought tolerance in cotton. Front Plant Sci. 2023;13:1097732. https://doi.org/10.3389/fpls.2022.1097732 .
doi: 10.3389/fpls.2022.1097732 pubmed: 36714777 pmcid: 9875013
Xing H, Pudake RN, Guo G, Xing G, Hu Z, Zhang Y, et al. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics. 2011;12:178. https://doi.org/10.1186/1471-2164-12-178 .
doi: 10.1186/1471-2164-12-178 pubmed: 21473768 pmcid: 3082248
Chothia C, Gough J, Vogel C, Teichmann SA. Evolution of the protein repertoire. Science. 2003;300:1701–3. https://doi.org/10.1126/science.1085371 .
doi: 10.1126/science.1085371 pubmed: 12805536
Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R. Gene duplication as a major force in evolution. J Genet. 2013;92:155–61. https://doi.org/10.1007/s12041-013-0212-8 .
doi: 10.1007/s12041-013-0212-8 pubmed: 23640422
Peng Y, Yan H, Guo L, Deng C, Wang C, Wang Y, et al. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat Genet. 2022;54:1248–58. https://doi.org/10.1038/s41588-022-01127-7 .
doi: 10.1038/s41588-022-01127-7 pubmed: 35851189 pmcid: 9355876
Lubaretz O, Zur Nieden U. Accumulation of plant small heat-stress proteins in storage organs. Planta. 2002;215:220–8. https://doi.org/10.1007/s00425-002-0745-1 .
doi: 10.1007/s00425-002-0745-1 pubmed: 12029471
Waters ER, Vierling E. Plant small heat shock proteins – evolutionary and functional diversity. New Phytol. 2020;227:24–37. https://doi.org/10.1111/nph.16536 .
doi: 10.1111/nph.16536 pubmed: 32297991
Huang J, Cai M, Long Q, Liu L, Lin Q, Jiang L, et al. OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity. Transgenic Res. 2014;23:643–55. https://doi.org/10.1007/s11248-014-9803-2 .
doi: 10.1007/s11248-014-9803-2 pubmed: 24792034
Liao Z, Wang L, Li C, Cao M, Wang J, Yao Z, et al. The lipoxygenase gene OsRCI-1 is involved in the biosynthesis of herbivore‐induced JAs and regulates plant defense and growth in rice. Plant Cell Environ. 2022;45:2827–40. https://doi.org/10.1111/pce.14341 .
doi: 10.1111/pce.14341 pubmed: 35538611
Yuan Y, Yu J, Kong L, Zhang W, Hou X, Cui G. Genome-wide investigation of the PLD gene family in alfalfa (Medicago sativa L.): identification, analysis and expression. BMC Genomics. 2022;23:243. https://doi.org/10.1186/s12864-022-08424-9 .
doi: 10.1186/s12864-022-08424-9 pubmed: 35350974 pmcid: 8962232
Li L, Zhang C, Zhang M, Yang C, Bao Y, Wang D, et al. Genome-wide analysis and expression profiling of the phospholipase D Gene Family in Solanum tuberosum. Biology. 2021;10:741. https://doi.org/10.3390/biology10080741 .
doi: 10.3390/biology10080741 pubmed: 34439973 pmcid: 8389595
Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, et al. Cytosolic glyceraldehyde-3-Phosphate dehydrogenases interact with phospholipase Dδ to Transduce Hydrogen Peroxide Signals in the Arabidopsis response to stress. Plant Cell. 2012;24:2200–12. https://doi.org/10.1105/tpc.111.094946 .
doi: 10.1105/tpc.111.094946 pubmed: 22589465 pmcid: 3442596
Hong Y, Devaiah SP, Bahn SC, Thamasandra BN, Li M, Welti R, et al. Phospholipase Dε and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant J. 2009;58:376–87. https://doi.org/10.1111/j.1365-313X.2009.03788.x .
doi: 10.1111/j.1365-313X.2009.03788.x pubmed: 19143999 pmcid: 4076113
Hong Y, Lu S. Phospholipases in Plant Response to Nitrogen and Phosphorus availability. Phospholipases Plant Signal. 2014;159–80. https://doi.org/10.1007/978-3-642-42011-5_9 .
Zhao J, Devaiah SP, Wang C, Li M, Welti R, Wang X. Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens. New Phytol. 2013;199:228–40. https://doi.org/10.1111/nph.12256 .
doi: 10.1111/nph.12256 pubmed: 23577648 pmcid: 4066384
William Roy S, Gilbert W. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet. 2006;7:211–21. https://doi.org/10.1038/nrg1807 .
doi: 10.1038/nrg1807
Pan J, Zhou Q, Wang H, Chen Y, Wang Z, Zhang J. Genome-wide identification and characterization of abiotic stress responsive GRAS family genes in oat (Avena sativa). PeerJ. 2023;11:e15370. https://doi.org/10.7717/peerj.15370 .
doi: 10.7717/peerj.15370 pubmed: 37187518 pmcid: 10178225
Soltis PS, Soltis DE. Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol. 2016;30:159–65. https://doi.org/10.1016/j.pbi.2016.03.015 .
doi: 10.1016/j.pbi.2016.03.015 pubmed: 27064530
Ren R, Wang H, Guo C, Zhang N, Zeng L, Chen Y, et al. Widespread whole genome duplications contribute to Genome Complexity and species Diversity in Angiosperms. Mol Plant. 2018;11:414–28. https://doi.org/10.1016/j.molp.2018.01.002 .
doi: 10.1016/j.molp.2018.01.002 pubmed: 29317285
Panchy N, Lehti-Shiu M, Shiu S-H. Evolution of gene duplication in plants. Plant Physiol. 2016;171:2294–316. https://doi.org/10.1104/pp.16.00523 .
doi: 10.1104/pp.16.00523 pubmed: 27288366 pmcid: 4972278
Bailly C. The signalling role of ROS in the regulation of seed germination and dormancy. Biochem J. 2019;476:3019–32. https://doi.org/10.1042/BCJ20190159 .
doi: 10.1042/BCJ20190159 pubmed: 31657442
Jurdak R, Launay-Avon A, Paysant‐Le Roux C, Bailly C. Retrograde signalling from the mitochondria to the nucleus translates the positive effect of ethylene on dormancy breaking of Arabidopsis thaliana seeds. New Phytol. 2021;229:2192–205. https://doi.org/10.1111/nph.16985 .
doi: 10.1111/nph.16985 pubmed: 33020928
Zimmermann P, Zentgraf U. The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett. 2005;10:515–34. https://doi.org/10.1002/9780470988855.ch4 .
doi: 10.1002/9780470988855.ch4 pubmed: 16217560
Zou C, Sun K, Mackaluso JD, Seddon AE, Jin R, Thomashow MF, et al. Cis -regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc Natl Acad Sci. 2011;108:14992–7. https://doi.org/10.1073/pnas.1103202108 .
doi: 10.1073/pnas.1103202108 pubmed: 21849619 pmcid: 3169165
Sathiyamoorthy P, Nakamura S. FREE-RADICAL-INDUCED LIPID PEROXIDATION IN SEEDS. Isr J Plant Sci. 1995;43:295–302. https://doi.org/10.1080/07929978.1995.10676616 .
doi: 10.1080/07929978.1995.10676616
Yao Z, Liu L, Gao F, Rampitsch C, Reinecke DM, Ozga JA, et al. Developmental and seed aging mediated regulation of antioxidative genes and differential expression of proteins during pre- and post-germinative phases in pea. J Plant Physiol. 2012;169:1477–88. https://doi.org/10.1016/j.jplph.2012.06.001 .
doi: 10.1016/j.jplph.2012.06.001 pubmed: 22742946
Mao PS, Wang XG, Wang YH, Han JG. Effect of storage temperature and duration on the vigor of zoysiagrass (Zoysia japonica Steud.) Seed harvested at different maturity stages. Grassl Sci. 2009;55:1–5. https://doi.org/10.1111/j.1744-697x.2009.00129.x .
doi: 10.1111/j.1744-697x.2009.00129.x
Hu D, Ma G, Wang Q, Yao J, Wang Y, Pritchard HW, et al. Spatial and temporal nature of reactive oxygen species production and programmed cell death in elm (Ulmus pumila L.) seeds during controlled deterioration. Plant Cell Environ. 2012;35:2045–59. https://doi.org/10.1111/j.1365-3040.2012.02535.x .
doi: 10.1111/j.1365-3040.2012.02535.x pubmed: 22582978
Nithiyanantham S, Siddhuraju P, Francis G. A promising approach to enhance the total phenolic content and antioxidant activity of raw and processed Jatropha curcas L. kernel meal extracts. Ind Crops Prod. 2013;43:261–9. https://doi.org/10.1016/j.indcrop.2012.07.040 .
doi: 10.1016/j.indcrop.2012.07.040
Kim K-H, Alam I, Kim Y-G, Sharmin SA, Lee K-W, Lee S-H, et al. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol Lett. 2012;34:371–7. https://doi.org/10.1007/s10529-011-0769-3 .
doi: 10.1007/s10529-011-0769-3 pubmed: 21984008
Wojciechowska N, Sobieszczuk-Nowicka E, Bagniewska‐Zadworna A. Plant organ senescence – regulation by manifold pathways. Plant Biol. 2018;20:167–81. https://doi.org/10.1111/plb.12672 .
doi: 10.1111/plb.12672 pubmed: 29178615
Jin X, Zhang W, Zhao G, Chai J, Wang M, Jiao R, et al. Effects of storage years on seed physiological and biochemical characteristics of oat. Acta Agrestia Sinica. 2019;27:356–63. https://doi.org/10.11733/j.issn.1007-0435.2019.02.012 .
doi: 10.11733/j.issn.1007-0435.2019.02.012
Huang Y, Liu H, Zhao G, Wang Q, Luo J, Yao R. Effects of natural aging and artificial aging on germination characteristics and genetic integrity of oat seeds. Acta Agrestia Sinica. 2022;30:2066–74. https://doi.org/10.11733/j.issn.1007-0435.2022.08.017 .
doi: 10.11733/j.issn.1007-0435.2022.08.017
Liu B, Song Y, Sun M, Mao P. Physiological responses of mitochondrial AsA-GSH cycle to ilmbibition of deteriated oat seeds. Acta Agrestia Sinica. 2021;29:211–9. https://doi.org/10.11733/j.issn.1007-0435.2021.02.001 .
doi: 10.11733/j.issn.1007-0435.2021.02.001
Huang J, Hai Z, Wang R, Yu Y, Chen X, Liang W, et al. Genome-wide analysis of HSP20 gene family and expression patterns under heat stress in cucumber (Cucumis sativus L). Front Plant Sci. 2022;13:968418. https://doi.org/10.3389/fpls.2022.968418 .
doi: 10.3389/fpls.2022.968418 pubmed: 36035708 pmcid: 9412230
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 2011;39:D225–9. https://doi.org/10.1093/nar/gkq1189 .
doi: 10.1093/nar/gkq1189 pubmed: 21109532
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40. https://doi.org/10.1093/bioinformatics/btu031 .
doi: 10.1093/bioinformatics/btu031 pubmed: 24451626 pmcid: 3998142
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein Identification and Analysis Tools on the ExPASy server. Humana Press. 2005;571–607. https://doi.org/10.1385/1-59259-890-0:571 .
Yu C, Lin C, Hwang J. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n ‐peptide compositions. Protein Sci. 2004;13:1402–6. https://doi.org/10.1110/ps.03479604 .
doi: 10.1110/ps.03479604 pubmed: 15096640 pmcid: 2286765
Hallgren J, Tsirigos KD, Pedersen MD, Almagro Armenteros JJ, Marcatili P, Nielsen H, et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. BioRxiv. 2022. https://doi.org/10.1101/2022.04.08.487609 .
doi: 10.1101/2022.04.08.487609
Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. 2022;40:1023–5. https://doi.org/10.1038/s41587-021-01156-3 .
doi: 10.1038/s41587-021-01156-3 pubmed: 34980915 pmcid: 9287161
Combet C, Blanchet C, Geourjon C, Deleage G. NPS@ network protein sequence analysis. Trends Biochem sci. 2000;25:147–50. https://doi.org/10.1016/s0968-0004(99)01540-6 .
doi: 10.1016/s0968-0004(99)01540-6 pubmed: 10694887
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–303. https://doi.org/10.1093/nar/gky427 .
doi: 10.1093/nar/gky427 pubmed: 29788355 pmcid: 6030848
Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021;38:3022–7. https://doi.org/10.1093/molbev/msab120 .
doi: 10.1093/molbev/msab120 pubmed: 33892491 pmcid: 8233496
Subramanian B, Gao S, Lercher MJ, Hu S, Chen W-H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019;47:W270–5. https://doi.org/10.1093/nar/gkz357 .
doi: 10.1093/nar/gkz357 pubmed: 31114888 pmcid: 6602473
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–8. https://doi.org/10.1093/nar/gkp335 .
doi: 10.1093/nar/gkp335 pubmed: 19458158 pmcid: 2703892
Wang J, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu S, et al. The conserved domain database in 2023. Nucleic Acids Res. 2023;51:D384–8. https://doi.org/10.1093/nar/gkac1096 .
doi: 10.1093/nar/gkac1096 pubmed: 36477806
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: an integrative Toolkit developed for interactive analyses of big Biological Data. Mol Plant. 2020;13:1194–202. https://doi.org/10.1016/j.molp.2020.06.009 .
doi: 10.1016/j.molp.2020.06.009 pubmed: 32585190
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer YV, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30:325–7. https://doi.org/10.1093/nar/30.1.325 .
doi: 10.1093/nar/30.1.325 pubmed: 11752327 pmcid: 99092
Kamal N, Tsardakas Renhuldt N, Bentzer J, Gundlach H, Haberer G, Juhász A, et al. The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature. 2022;606:113–9. https://doi.org/10.1038/s41586-022-04732-y .
doi: 10.1038/s41586-022-04732-y pubmed: 35585233 pmcid: 9159951
Zheng X, Ren Z, Zheng G. Discussion on methods for determining seed viability——III. Artificial accelerated aging method. Seed. 1982:31 – 4. https://doi.org/10.16590/j.cnki.1001-4705.1982.04.024
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262 .
doi: 10.1006/meth.2001.1262 pubmed: 11846609

Auteurs

Yuan Ma (Y)

Key Laboratory of Grassland Ecosystems, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.

Huan Liu (H)

Key Laboratory of Grassland Ecosystems, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China. liuhuan@gsau.edu.cn.

Jinglong Wang (J)

Tibet Grassland Science Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China.

Guiqin Zhao (G)

Key Laboratory of Grassland Ecosystems, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.

Kuiju Niu (K)

Key Laboratory of Grassland Ecosystems, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.

Xiangrui Zhou (X)

Key Laboratory of Grassland Ecosystems, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.

Ran Zhang (R)

Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Grassland Research Center, National Forestry and Grassland Administration, Beijing, 100091, China.

Ruirui Yao (R)

Key Laboratory of Grassland Ecosystems, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH