Uncovering the small proteome of Methanosarcina mazei using Ribo-seq and peptidomics under different nitrogen conditions.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
06 Oct 2024
Historique:
received: 08 10 2023
accepted: 25 09 2024
medline: 7 10 2024
pubmed: 7 10 2024
entrez: 6 10 2024
Statut: epublish

Résumé

The mesophilic methanogenic archaeal model organism Methanosarcina mazei strain Gö1 is crucial for climate and environmental research due to its ability to produce methane. Here, we establish a Ribo-seq protocol for M. mazei strain Gö1 under two growth conditions (nitrogen sufficiency and limitation). The translation of 93 previously annotated and 314 unannotated small ORFs, coding for proteins ≤ 70 amino acids, is predicted with high confidence based on Ribo-seq data. LC-MS analysis validates the translation for 62 annotated small ORFs and 26 unannotated small ORFs. Epitope tagging followed by immunoblotting analysis confirms the translation of 13 out of 16 selected unannotated small ORFs. A comprehensive differential transcription and translation analysis reveals that 29 of 314 unannotated small ORFs are differentially regulated in response to nitrogen availability at the transcriptional and 49 at the translational level. A high number of reported small RNAs are emerging as dual-function RNAs, including sRNA

Identifiants

pubmed: 39370430
doi: 10.1038/s41467-024-53008-8
pii: 10.1038/s41467-024-53008-8
doi:

Substances chimiques

Nitrogen N762921K75
Proteome 0
Archaeal Proteins 0
RNA, Archaeal 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8659

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : RSCHM1052/20-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : RSCHM1052/20-2
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : RSCHM1052/19-2
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : CIBSS-EXC-2189-390939984
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : BA2168/21-2
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SH580/7-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SH580/7-2

Informations de copyright

© 2024. The Author(s).

Références

Dai, X. & Shen, L. Advances and trends in omics technology development. Front Med (Lausanne) 9, 911861 (2022).
pubmed: 35860739 doi: 10.3389/fmed.2022.911861
Land, M. et al. Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genomics 15, 141–161 (2015).
pubmed: 25722247 pmcid: 4361730 doi: 10.1007/s10142-015-0433-4
Ahrens, C. H., Wade, J. T., Champion, M. M. & Langer, J. D. A Practical guide to small protein discovery and characterization using mass spectrometry. J. Bacteriol. 204, e00353–00321 (2022).
pubmed: 34748388 pmcid: 8765459 doi: 10.1128/jb.00353-21
Storz, G., Wolf, Y. I. & Ramamurthi, K. S. Small proteins can no longer be ignored. Annu Rev. Biochem 83, 753–777 (2014).
pubmed: 24606146 pmcid: 4166647 doi: 10.1146/annurev-biochem-070611-102400
Aoyama, J. J., Raina, M., Zhong, A. & Storz, G. Dual-function Spot 42 RNA encodes a 15-amino acid protein that regulates the CRP transcription factor. Proc. Natl Acad. Sci. USA 119, e2119866119 (2022).
pubmed: 35239441 pmcid: 8916003 doi: 10.1073/pnas.2119866119
Duval, M. & Cossart, P. Small bacterial and phagic proteins: an updated view on a rapidly moving field. Curr. Opin. Microbiol 39, 81–88 (2017).
pubmed: 29111488 doi: 10.1016/j.mib.2017.09.010
Hemm, M. R., Weaver, J. & Storz, G. Escherichia coli Small Proteome. Ecosal Plus 9, https://doi.org/10.1128/ecosalplus.ESP-0031-2019 (2020).
Khitun, A. & Slavoff, S. A. Proteomic detection and validation of translated small open reading frames. Curr. Protoc. Chem. Biol. 11, e77 (2019).
pubmed: 31750990 pmcid: 6878975 doi: 10.1002/cpch.77
Melior, H. et al. The leader peptide peTrpL forms antibiotic-containing ribonucleoprotein complexes for posttranscriptional regulation of multiresistance genes. MBio 11, https://doi.org/10.1128/mBio.01027-20 (2020).
Patraquim, P., Mumtaz, M. A. S., Pueyo, J. I., Aspden, J. L. & Couso, J.-P. Developmental regulation of canonical and small ORF translation from mRNAs. Genome Biol. 21, 128 (2020).
pubmed: 32471506 pmcid: 7260771 doi: 10.1186/s13059-020-02011-5
Song, K. et al. AtpΘ is an inhibitor of F0F1 ATP synthase to arrest ATP hydrolysis during low-energy conditions in cyanobacteria. Curr. Biol. 32, 136–148.e135 (2022).
pubmed: 34762820 doi: 10.1016/j.cub.2021.10.051
Peng, X., Mayo-Muñoz, D., Bhoobalan-Chitty, Y. & Martínez-Álvarez, L. Anti-CRISPR proteins in archaea. Trends Microbiol. 28, 913–921 (2020).
pubmed: 32499102 doi: 10.1016/j.tim.2020.05.007
Jordan, B., Weidenbach, K. & Schmitz, R. A. The power of the small: the underestimated role of small proteins in bacterial and archaeal physiology. Curr. Opin. Microbiol 76, 102384 (2023).
pubmed: 37776678 doi: 10.1016/j.mib.2023.102384
Weidenbach, K., Gutt, M., Cassidy, L., Chibani, C. & Schmitz, R. A. Small proteins in archaea, a mainly unexplored world. J. Bacteriol. 204, e0031321 (2022).
pubmed: 34543104 doi: 10.1128/JB.00313-21
Deppenmeier, U. et al. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol Biotechnol. 4, 453–461 (2002).
pubmed: 12125824
Deppenmeier, U., Müller, V. & Gottschalk, G. Pathways of energy conservation in methanogenic archaea. Arch. Microbiol 165, 149–163 (1996).
doi: 10.1007/BF01692856
Ferry, J. G. Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol Rev. 23, 13–38 (1999).
pubmed: 10077852 doi: 10.1111/j.1574-6976.1999.tb00390.x
Hippe, H., Caspari, D., Fiebig, K. & Gottschalk, G. Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc. Natl Acad. Sci. USA 76, 494–498 (1979).
pubmed: 284366 pmcid: 382968 doi: 10.1073/pnas.76.1.494
Thauer, R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiol. (Read., Engl.) 144, 2377–2406 (1998).
doi: 10.1099/00221287-144-9-2377
Ehlers, C., Veit, K., Gottschalk, G. & Schmitz, R. A. Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1. Archaea 1, 143–150 (2002).
pubmed: 15803652 pmcid: 2685556 doi: 10.1155/2002/362813
Buddeweg, A., Sharma, K., Urlaub, H. & Schmitz, R. A. sRNA41 affects ribosome binding sites within polycistronic mRNAs in Methanosarcina mazei Gö1. Mol. Microbiol 107, 595–609 (2018).
pubmed: 29271512 doi: 10.1111/mmi.13900
Prasse, D. & Schmitz, R. A. Small RNAs involved in regulation of nitrogen metabolism. Microbiol Spectr 6, 10–1128 (2018).
Weidenbach, K., Ehlers, C., Kock, J., Ehrenreich, A. & Schmitz, R. A. Insights into the NrpR regulon in Methanosarcina mazei Gö1. Arch. Microbiol 190, 319–332 (2008).
pubmed: 18415079 doi: 10.1007/s00203-008-0369-3
Weidenbach, K., Ehlers, C., Kock, J. & Schmitz, R. A. NrpRII mediates contacts between NrpRI and general transcription factors in the archaeon Methanosarcina mazei Gö1. FEBS J. 277, 4398–4411 (2010).
pubmed: 20875081 doi: 10.1111/j.1742-4658.2010.07821.x
Weidenbach, K., Ehlers, C. & Schmitz, R. A. The transcriptional activator NrpA is crucial for inducing nitrogen fixation in Methanosarcina mazei Gö1 under nitrogen-limited conditions. FEBS J. 281, 3507–3522 (2014).
pubmed: 24930989 doi: 10.1111/febs.12876
Prasse, D., Förstner, K. U., Jäger, D., Backofen, R. & Schmitz, R. A. sRNA154 a newly identified regulator of nitrogen fixation in Methanosarcina mazei strain Gö1. RNA Biol. 14, 1544–1558 (2017).
pubmed: 28296572 pmcid: 5785227 doi: 10.1080/15476286.2017.1306170
Jäger, D. et al. Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability. Proc. Natl Acad. Sci. 106, 21878–21882 (2009).
pubmed: 19996181 pmcid: 2799843 doi: 10.1073/pnas.0909051106
Ehlers, C., Jäger, D. & Schmitz, R. A. Establishing a markerless genetic exchange system for Methanosarcina mazei strain Gö1 for constructing chromosomal mutants of small RNA genes. Archaea 2011, 439608 (2011).
pubmed: 21941461 pmcid: 3177094 doi: 10.1155/2011/439608
Ehlers, C. et al. Development of genetic methods and construction of a chromosomal glnK1 mutant in Methanosarcina mazei strain Gö1. Mol. Genet Genomics 273, 290–298 (2005).
pubmed: 15824904 doi: 10.1007/s00438-005-1128-7
Thomsen, J., Weidenbach, K., Metcalf, W. W. & Schmitz, R. A. Genetic methods and construction of chromosomal mutations in methanogenic archaea. Methods Mol. Biol. 2522, 105–117 (2022).
pubmed: 36125745 doi: 10.1007/978-1-0716-2445-6_6
Prasse, D. et al. First description of small proteins encoded by spRNAs in Methanosarcina mazei strain Gö1. Biochimie 117, 138–148 (2015).
pubmed: 25890157 doi: 10.1016/j.biochi.2015.04.007
Gutt, M. et al. High complexity of Glutamine synthetase regulation in Methanosarcina mazei: Small protein 26 interacts and enhances glutamine synthetase activity. FEBS J. 288, 5350–5373 (2021).
pubmed: 33660383 doi: 10.1111/febs.15799
Habenicht, T. et al. Small protein mediates inhibition of ammonium transport in Methanosarcina mazei-an ancient mechanism? Microbiol Spectr. 11, e0281123 (2023).
pubmed: 37909787 doi: 10.1128/spectrum.02811-23
Aspden, J. L. et al. Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq. eLife 3, e03528 (2014).
pubmed: 25144939 pmcid: 4359375 doi: 10.7554/eLife.03528
Baek, J., Lee, J., Yoon, K. & Lee, H. Identification of unannotated small genes in Salmonella. G3 Genes|Genomes|Genet. 7, 983–989 (2017).
pubmed: 28122954 pmcid: 5345727 doi: 10.1534/g3.116.036939
Bazzini, A. A. et al. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J. 33, 981–993 (2014).
pubmed: 24705786 pmcid: 4193932 doi: 10.1002/embj.201488411
Neuhaus, K. et al. Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq – ryhB encodes the regulatory RNA RyhB and a peptide, RyhP. BMC Genomics 18, 216 (2017).
pubmed: 28245801 pmcid: 5331693 doi: 10.1186/s12864-017-3586-9
Hemm, M. R., Paul, B. J., Schneider, T. D., Storz, G. & Rudd, K. E. Small membrane proteins found by comparative genomics and ribosome binding site models. Mol. Microbiol 70, 1487–1501 (2008).
pubmed: 19121005 pmcid: 2614699 doi: 10.1111/j.1365-2958.2008.06495.x
Gelsinger, D. R. et al. Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution. Nucleic Acids Res. 48, 5201–5216 (2020).
pubmed: 32382758 pmcid: 7261190 doi: 10.1093/nar/gkaa304
Hadjeras, L. et al. Revealing the small proteome of Haloferax volcanii by combining ribosome profiling and small-protein optimized mass spectrometry. microLife 4, uqad001 (2023).
pubmed: 37223747 pmcid: 10117724 doi: 10.1093/femsml/uqad001
Raina, M., King, A., Bianco, C. & Vanderpool, C. K. Dual-Function RNAs. Microbiol Spectr 6, https://doi.org/10.1128/microbiolspec.RWR-0032-2018 (2018).
Bobrovskyy, M. & Vanderpool, C. K. Diverse mechanisms of post-transcriptional repression by the small RNA regulator of glucose-phosphate stress. Mol. Microbiol 99, 254–273 (2016).
pubmed: 26411266 doi: 10.1111/mmi.13230
Lloyd, C. R., Park, S., Fei, J. & Vanderpool, C. K. The small protein SgrT controls transport activity of the glucose-specific phosphotransferase system. J Bacteriol 199, https://doi.org/10.1128/jb.00869-16 (2017).
Oh, E. et al. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147, 1295–1308 (2011).
pubmed: 22153074 pmcid: 3277850 doi: 10.1016/j.cell.2011.10.044
Hadjeras, L. et al. Unraveling the small proteome of the plant symbiont Sinorhizobium meliloti by ribosome profiling and proteogenomics. microLife 4, uqad012 (2023).
pubmed: 37223733 pmcid: 10117765 doi: 10.1093/femsml/uqad012
Ingolia, N. T. Ribosome Footprint Profiling of Translation throughout the Genome. Cell 165, 22–33 (2016).
pubmed: 27015305 pmcid: 4917602 doi: 10.1016/j.cell.2016.02.066
Vazquez-Laslop, N., Sharma, C. M., Mankin, A. & Buskirk, A. R. Identifying small open reading frames in prokaryotes with ribosome profiling. J. Bacteriol. 204, e0029421 (2022).
pubmed: 34339296 doi: 10.1128/JB.00294-21
Gelhausen, R. et al. HRIBO: high-throughput analysis of bacterial ribosome profiling data. Bioinformatics 37, 2061–2063 (2021).
pubmed: 33175953 doi: 10.1093/bioinformatics/btaa959
Clauwaert, J., Menschaert, G. & Waegeman, W. DeepRibo: a neural network for precise gene annotation of prokaryotes by combining ribosome profiling signal and binding site patterns. Nucleic Acids Res. 47, e36 (2019).
pubmed: 30753697 pmcid: 6451124 doi: 10.1093/nar/gkz061
Ndah, E. et al. REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes. Nucleic Acids Res. 45, e168 (2017).
pubmed: 28977509 pmcid: 5714196 doi: 10.1093/nar/gkx758
Jäger, D. et al. An archaeal sRNA targeting cis - and trans -encoded mRNAs via two distinct domains. Nucleic Acids Res. 40, 10964–10979 (2012).
pubmed: 22965121 pmcid: 3510493 doi: 10.1093/nar/gks847
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).
pubmed: 18190707 pmcid: 2395244 doi: 10.1186/gb-2008-9-1-r7
Omasits, U. et al. An integrative strategy to identify the entire protein coding potential of prokaryotic genomes by proteogenomics. Genome Res. 27, 2083–2095 (2017).
pubmed: 29141959 pmcid: 5741054 doi: 10.1101/gr.218255.116
Cassidy, L. et al. Multidimensional separation schemes enhance the identification and molecular characterization of low molecular weight proteomes and short open reading frame-encoded peptides in top-down proteomics. J. Proteom. 230, 103988 (2021).
doi: 10.1016/j.jprot.2020.103988
Cassidy, L., Kaulich, P. T. & Tholey, A. Depletion of high-molecular-mass proteins for the identification of small proteins and short open reading frame encoded peptides in cellular proteomes. J. Proteome Res. 18, 1725–1734 (2019).
pubmed: 30779583 doi: 10.1021/acs.jproteome.8b00948
Cassidy, L., Prasse, D., Linke, D., Schmitz, R. A. & Tholey, A. Combination of bottom-up 2D-LC-MS and semi-top-down GelFree-LC-MS enhances coverage of proteome and low molecular weight short open reading frame encoded peptides of the archaeon Methanosarcina mazei. J. Proteome Res. 15, 3773–3783 (2016).
pubmed: 27557128 doi: 10.1021/acs.jproteome.6b00569
Kaulich, P. T., Cassidy, L., Weidenbach, K., Schmitz, R. A. & Tholey, A. Complementarity of different SDS-PAGE gel staining methods for the identification of short open reading frame-encoded peptides. PROTEOMICS 20, 2000084 (2020).
doi: 10.1002/pmic.202000084
Madeira, F. et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50, W276–W279 (2022).
pubmed: 35412617 pmcid: 9252731 doi: 10.1093/nar/gkac240
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).
pubmed: 34791371 doi: 10.1093/nar/gkab1061
Schumacher, K. et al. Ribosome profiling reveals the fine-tuned response of Escherichia coli to mild and severe acid stress. bioRxiv, 2023.2006.2002.543275 https://doi.org/10.1101/2023.06.02.543275 (2023).
Ingolia, N. T. et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep. 8, 1365–1379 (2014).
pubmed: 25159147 pmcid: 4216110 doi: 10.1016/j.celrep.2014.07.045
Ingolia, N. T., Hussmann, J. A. & Weissman, J. S. Ribosome profiling: Global views of translation. Cold Spring Harb Perspect Biol 11 https://doi.org/10.1101/cshperspect.a032698 (2019).
Brar, G. A. & Weissman, J. S. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat. Rev. Mol. Cell Biol. 16, 651–664 (2015).
pubmed: 26465719 pmcid: 5522010 doi: 10.1038/nrm4069
Gelhausen, R. et al. RiboReport - benchmarking tools for ribosome profiling-based identification of open reading frames in bacteria. Brief Bioinformatics 23, https://doi.org/10.1093/bib/bbab549 (2022).
Fritsch, C. et al. Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting. Genome Res 22, 2208–2218 (2012).
pubmed: 22879431 pmcid: 3483550 doi: 10.1101/gr.139568.112
Fijalkowska, D. et al. eIF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs. Nucleic Acids Res 45, 7997–8013 (2017).
pubmed: 28541577 pmcid: 5570006 doi: 10.1093/nar/gkx469
Mohammad, F., Green, R. & Buskirk, A. R. A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution. eLife 8, https://doi.org/10.7554/eLife.42591 (2019).
Venturini, E. et al. A global data-driven census of Salmonella small proteins and their potential functions in bacterial virulence. microLife 1, uqaa002 (2020).
pubmed: 37223003 pmcid: 10117436 doi: 10.1093/femsml/uqaa002
Mackowiak, S. D. et al. Extensive identification and analysis of conserved small ORFs in animals. Genome Biol. 16, 179 (2015).
pubmed: 26364619 pmcid: 4568590 doi: 10.1186/s13059-015-0742-x
Fuchs, S. et al. Towards the characterization of the hidden world of small proteins in Staphylococcus aureus, a proteogenomics approach. PLoS Genet 17, e1009585 (2021).
pubmed: 34061833 pmcid: 8195425 doi: 10.1371/journal.pgen.1009585
VanOrsdel, C. E. et al. Identifying New Small Proteins in Escherichia coli. Proteomics 18, e1700064 (2018).
pubmed: 29645342 doi: 10.1002/pmic.201700064
Weaver, J., Mohammad, F., Buskirk, A. R. & Storz, G. Identifying small proteins by ribosome profiling with stalled initiation complexes. MBio 10, https://doi.org/10.1128/mBio.02819-18 (2019).
Miravet-Verde, S. et al. Unraveling the hidden universe of small proteins in bacterial genomes. Mol. Syst. Biol. 15, e8290 (2019).
pubmed: 30796087 pmcid: 6385055 doi: 10.15252/msb.20188290
Veit, K. et al. Global transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities. Mol. Genet Genomics 276, 41–55 (2006).
pubmed: 16625354 doi: 10.1007/s00438-006-0117-9
Gray, T., Storz, G. & Papenfort, K. Small Proteins; Big Questions. J. Bacteriol. 204, e00341–00321 (2022).
pubmed: 34309401 pmcid: 8765408 doi: 10.1128/JB.00341-21
Vanderpool, C. K. Physiological consequences of small RNA-mediated regulation of glucose-phosphate stress. Curr. Opin. Microbiol 10, 146–151 (2007).
pubmed: 17383224 doi: 10.1016/j.mib.2007.03.011
Venkat, K. et al. A dual-function RNA balances carbon uptake and central metabolism in Vibrio cholerae. Embo j. 40, e108542 (2021).
pubmed: 34612526 pmcid: 8672173 doi: 10.15252/embj.2021108542
Hanahan, D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557–580 (1983).
pubmed: 6345791 doi: 10.1016/S0022-2836(83)80284-8
Miller, V. L. & Mekalanos, J. J. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170, 2575–2583 (1988).
pubmed: 2836362 pmcid: 211174 doi: 10.1128/jb.170.6.2575-2583.1988
Inoue, H., Nojima, H. & Okayama, H. High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28 (1990).
pubmed: 2265755 doi: 10.1016/0378-1119(90)90336-P
Gehlert, F. O. et al. Active in vivo translocation of the Methanosarcina mazei Gö1 Casposon. Nucleic Acids Research, gkad474 https://doi.org/10.1093/nar/gkad474 (2023).
Gerashchenko, M. V. & Gladyshev, V. N. Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res. 42, e134 (2014).
pubmed: 25056308 pmcid: 4176156 doi: 10.1093/nar/gku671
Sharma, C. M., Darfeuille, F., Plantinga, T. H. & Vogel, J. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev. 21, 2804–2817 (2007).
pubmed: 17974919 pmcid: 2045133 doi: 10.1101/gad.447207
Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550 (2012).
pubmed: 22836135 pmcid: 3535016 doi: 10.1038/nprot.2012.086
Köster, J. & Rahmann, S. Snakemake–a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).
pubmed: 22908215 doi: 10.1093/bioinformatics/bts480
Grüning, B. et al. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat. Methods 15, 475–476 (2018).
pubmed: 29967506 pmcid: 11070151 doi: 10.1038/s41592-018-0046-7
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 17, 10 (2011).
doi: 10.14806/ej.17.1.200
Otto, C., Stadler, P. F. & Hoffmann, S. Lacking alignments? The next-generation sequencing mapper segemehl revisited. Bioinformatics 30, 1837–1843 (2014).
pubmed: 24626854 doi: 10.1093/bioinformatics/btu146
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res 7, 1338 (2018).
pubmed: 30254741 pmcid: 6124377 doi: 10.12688/f1000research.15931.1
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
pubmed: 27312411 pmcid: 5039924 doi: 10.1093/bioinformatics/btw354
Buels, R. et al. JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 17, 66 (2016).
pubmed: 27072794 pmcid: 4830012 doi: 10.1186/s13059-016-0924-1
Kaulich, P. T., Cassidy, L., Winkels, K. & Tholey, A. Improved identification of proteoforms in top-down proteomics using FAIMS with internal CV stepping. Anal. Chem. 94, 3600–3607 (2022).
pubmed: 35172570 doi: 10.1021/acs.analchem.1c05123
Slavoff, S. A. et al. Peptidomic discovery of short open reading frame–encoded peptides in human cells. Nat. Chem. Biol. 9, 59–64 (2013).
pubmed: 23160002 doi: 10.1038/nchembio.1120
Vizcaíno, J. A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).
pubmed: 24727771 pmcid: 3986813 doi: 10.1038/nbt.2839
Xiao, Z., Zou, Q., Liu, Y. & Yang, X. Genome-wide assessment of differential translations with ribosome profiling data. Nat. Commun. 7, 11194 (2016).
pubmed: 27041671 pmcid: 4822032 doi: 10.1038/ncomms11194
Li, W., Wang, W., Uren, P. J., Penalva, L. O. F. & Smith, A. D. Riborex: fast and flexible identification of differential translation from Ribo-seq data. Bioinformatics 33, 1735–1737 (2017).
pubmed: 28158331 pmcid: 5860393 doi: 10.1093/bioinformatics/btx047
Chothani, S. et al. deltaTE: Detection of translationally regulated genes by integrative analysis of Ribo-seq and RNA-seq data. Curr. Protoc. Mol. Biol. 129, e108 (2019).
pubmed: 31763789 pmcid: 9285699 doi: 10.1002/cpmb.108
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov. (Camb.) 2, 100141 (2021).
Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).
pubmed: 10802651 pmcid: 3037419 doi: 10.1038/75556
Consortium, T. G. O. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021).
doi: 10.1093/nar/gkaa1113
UniProt, C. Uniprot: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).
doi: 10.1093/nar/gkac1052
Carlson, M. & Pagès, H. AnnotationForge: Tools for building SQLite-based annotation data packages. R Packag. version 1 (2020).
Wickham, H. ggplot2. Wiley Interdiscip. Rev.: computational Stat. 3, 180–185 (2011).
doi: 10.1002/wics.147
Thomsen, J. & Schmitz, R. A. Generating a small shuttle vector for effective genetic engineering of Methanosarcina mazei allowed first insights in plasmid replication mechanism in the Methanoarchaeon. Int J Mol Sci. 23 https://doi.org/10.3390/ijms231911910 (2022).
Guss, A. M., Rother, M., Zhang, J. K., Kulkarni, G. & Metcalf, W. W. New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species. Archaea 2, 193–203 (2008).
pubmed: 19054746 pmcid: 2685592 doi: 10.1155/2008/534081
Allen, R. J. et al. Conservation analysis of the CydX protein yields insights into small protein identification and evolution. BMC Genomics 15, 946 (2014).
pubmed: 25475368 pmcid: 4325964 doi: 10.1186/1471-2164-15-946
Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).
pubmed: 20472543 pmcid: 2887053 doi: 10.1093/bioinformatics/btq249

Auteurs

Muhammad Aammar Tufail (MA)

Institute for General Microbiology, Kiel University, 24118, Kiel, Germany.

Britta Jordan (B)

Institute for General Microbiology, Kiel University, 24118, Kiel, Germany.

Lydia Hadjeras (L)

Institute of Molecular Infection Biology, University of Würzburg, 97080, Würzburg, Germany.

Rick Gelhausen (R)

Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany.

Liam Cassidy (L)

Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany.

Tim Habenicht (T)

Institute for General Microbiology, Kiel University, 24118, Kiel, Germany.

Miriam Gutt (M)

Institute for General Microbiology, Kiel University, 24118, Kiel, Germany.

Lisa Hellwig (L)

Institute for General Microbiology, Kiel University, 24118, Kiel, Germany.

Rolf Backofen (R)

Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany.

Andreas Tholey (A)

Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany.

Cynthia M Sharma (CM)

Institute of Molecular Infection Biology, University of Würzburg, 97080, Würzburg, Germany.

Ruth A Schmitz (RA)

Institute for General Microbiology, Kiel University, 24118, Kiel, Germany. rschmitz@ifam.uni-kiel.de.

Articles similaires

Humans Arthritis, Rheumatoid Lipid Metabolism Male Female
Humans Induced Pluripotent Stem Cells Schizophrenia Neural Stem Cells DNA Damage

Classifications MeSH