Uncovering the small proteome of Methanosarcina mazei using Ribo-seq and peptidomics under different nitrogen conditions.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
06 Oct 2024
06 Oct 2024
Historique:
received:
08
10
2023
accepted:
25
09
2024
medline:
7
10
2024
pubmed:
7
10
2024
entrez:
6
10
2024
Statut:
epublish
Résumé
The mesophilic methanogenic archaeal model organism Methanosarcina mazei strain Gö1 is crucial for climate and environmental research due to its ability to produce methane. Here, we establish a Ribo-seq protocol for M. mazei strain Gö1 under two growth conditions (nitrogen sufficiency and limitation). The translation of 93 previously annotated and 314 unannotated small ORFs, coding for proteins ≤ 70 amino acids, is predicted with high confidence based on Ribo-seq data. LC-MS analysis validates the translation for 62 annotated small ORFs and 26 unannotated small ORFs. Epitope tagging followed by immunoblotting analysis confirms the translation of 13 out of 16 selected unannotated small ORFs. A comprehensive differential transcription and translation analysis reveals that 29 of 314 unannotated small ORFs are differentially regulated in response to nitrogen availability at the transcriptional and 49 at the translational level. A high number of reported small RNAs are emerging as dual-function RNAs, including sRNA
Identifiants
pubmed: 39370430
doi: 10.1038/s41467-024-53008-8
pii: 10.1038/s41467-024-53008-8
doi:
Substances chimiques
Nitrogen
N762921K75
Proteome
0
Archaeal Proteins
0
RNA, Archaeal
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8659Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : RSCHM1052/20-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : RSCHM1052/20-2
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : RSCHM1052/19-2
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : CIBSS-EXC-2189-390939984
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : BA2168/21-2
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SH580/7-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SH580/7-2
Informations de copyright
© 2024. The Author(s).
Références
Dai, X. & Shen, L. Advances and trends in omics technology development. Front Med (Lausanne) 9, 911861 (2022).
pubmed: 35860739
doi: 10.3389/fmed.2022.911861
Land, M. et al. Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genomics 15, 141–161 (2015).
pubmed: 25722247
pmcid: 4361730
doi: 10.1007/s10142-015-0433-4
Ahrens, C. H., Wade, J. T., Champion, M. M. & Langer, J. D. A Practical guide to small protein discovery and characterization using mass spectrometry. J. Bacteriol. 204, e00353–00321 (2022).
pubmed: 34748388
pmcid: 8765459
doi: 10.1128/jb.00353-21
Storz, G., Wolf, Y. I. & Ramamurthi, K. S. Small proteins can no longer be ignored. Annu Rev. Biochem 83, 753–777 (2014).
pubmed: 24606146
pmcid: 4166647
doi: 10.1146/annurev-biochem-070611-102400
Aoyama, J. J., Raina, M., Zhong, A. & Storz, G. Dual-function Spot 42 RNA encodes a 15-amino acid protein that regulates the CRP transcription factor. Proc. Natl Acad. Sci. USA 119, e2119866119 (2022).
pubmed: 35239441
pmcid: 8916003
doi: 10.1073/pnas.2119866119
Duval, M. & Cossart, P. Small bacterial and phagic proteins: an updated view on a rapidly moving field. Curr. Opin. Microbiol 39, 81–88 (2017).
pubmed: 29111488
doi: 10.1016/j.mib.2017.09.010
Hemm, M. R., Weaver, J. & Storz, G. Escherichia coli Small Proteome. Ecosal Plus 9, https://doi.org/10.1128/ecosalplus.ESP-0031-2019 (2020).
Khitun, A. & Slavoff, S. A. Proteomic detection and validation of translated small open reading frames. Curr. Protoc. Chem. Biol. 11, e77 (2019).
pubmed: 31750990
pmcid: 6878975
doi: 10.1002/cpch.77
Melior, H. et al. The leader peptide peTrpL forms antibiotic-containing ribonucleoprotein complexes for posttranscriptional regulation of multiresistance genes. MBio 11, https://doi.org/10.1128/mBio.01027-20 (2020).
Patraquim, P., Mumtaz, M. A. S., Pueyo, J. I., Aspden, J. L. & Couso, J.-P. Developmental regulation of canonical and small ORF translation from mRNAs. Genome Biol. 21, 128 (2020).
pubmed: 32471506
pmcid: 7260771
doi: 10.1186/s13059-020-02011-5
Song, K. et al. AtpΘ is an inhibitor of F0F1 ATP synthase to arrest ATP hydrolysis during low-energy conditions in cyanobacteria. Curr. Biol. 32, 136–148.e135 (2022).
pubmed: 34762820
doi: 10.1016/j.cub.2021.10.051
Peng, X., Mayo-Muñoz, D., Bhoobalan-Chitty, Y. & Martínez-Álvarez, L. Anti-CRISPR proteins in archaea. Trends Microbiol. 28, 913–921 (2020).
pubmed: 32499102
doi: 10.1016/j.tim.2020.05.007
Jordan, B., Weidenbach, K. & Schmitz, R. A. The power of the small: the underestimated role of small proteins in bacterial and archaeal physiology. Curr. Opin. Microbiol 76, 102384 (2023).
pubmed: 37776678
doi: 10.1016/j.mib.2023.102384
Weidenbach, K., Gutt, M., Cassidy, L., Chibani, C. & Schmitz, R. A. Small proteins in archaea, a mainly unexplored world. J. Bacteriol. 204, e0031321 (2022).
pubmed: 34543104
doi: 10.1128/JB.00313-21
Deppenmeier, U. et al. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol Biotechnol. 4, 453–461 (2002).
pubmed: 12125824
Deppenmeier, U., Müller, V. & Gottschalk, G. Pathways of energy conservation in methanogenic archaea. Arch. Microbiol 165, 149–163 (1996).
doi: 10.1007/BF01692856
Ferry, J. G. Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol Rev. 23, 13–38 (1999).
pubmed: 10077852
doi: 10.1111/j.1574-6976.1999.tb00390.x
Hippe, H., Caspari, D., Fiebig, K. & Gottschalk, G. Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc. Natl Acad. Sci. USA 76, 494–498 (1979).
pubmed: 284366
pmcid: 382968
doi: 10.1073/pnas.76.1.494
Thauer, R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiol. (Read., Engl.) 144, 2377–2406 (1998).
doi: 10.1099/00221287-144-9-2377
Ehlers, C., Veit, K., Gottschalk, G. & Schmitz, R. A. Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1. Archaea 1, 143–150 (2002).
pubmed: 15803652
pmcid: 2685556
doi: 10.1155/2002/362813
Buddeweg, A., Sharma, K., Urlaub, H. & Schmitz, R. A. sRNA41 affects ribosome binding sites within polycistronic mRNAs in Methanosarcina mazei Gö1. Mol. Microbiol 107, 595–609 (2018).
pubmed: 29271512
doi: 10.1111/mmi.13900
Prasse, D. & Schmitz, R. A. Small RNAs involved in regulation of nitrogen metabolism. Microbiol Spectr 6, 10–1128 (2018).
Weidenbach, K., Ehlers, C., Kock, J., Ehrenreich, A. & Schmitz, R. A. Insights into the NrpR regulon in Methanosarcina mazei Gö1. Arch. Microbiol 190, 319–332 (2008).
pubmed: 18415079
doi: 10.1007/s00203-008-0369-3
Weidenbach, K., Ehlers, C., Kock, J. & Schmitz, R. A. NrpRII mediates contacts between NrpRI and general transcription factors in the archaeon Methanosarcina mazei Gö1. FEBS J. 277, 4398–4411 (2010).
pubmed: 20875081
doi: 10.1111/j.1742-4658.2010.07821.x
Weidenbach, K., Ehlers, C. & Schmitz, R. A. The transcriptional activator NrpA is crucial for inducing nitrogen fixation in Methanosarcina mazei Gö1 under nitrogen-limited conditions. FEBS J. 281, 3507–3522 (2014).
pubmed: 24930989
doi: 10.1111/febs.12876
Prasse, D., Förstner, K. U., Jäger, D., Backofen, R. & Schmitz, R. A. sRNA154 a newly identified regulator of nitrogen fixation in Methanosarcina mazei strain Gö1. RNA Biol. 14, 1544–1558 (2017).
pubmed: 28296572
pmcid: 5785227
doi: 10.1080/15476286.2017.1306170
Jäger, D. et al. Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability. Proc. Natl Acad. Sci. 106, 21878–21882 (2009).
pubmed: 19996181
pmcid: 2799843
doi: 10.1073/pnas.0909051106
Ehlers, C., Jäger, D. & Schmitz, R. A. Establishing a markerless genetic exchange system for Methanosarcina mazei strain Gö1 for constructing chromosomal mutants of small RNA genes. Archaea 2011, 439608 (2011).
pubmed: 21941461
pmcid: 3177094
doi: 10.1155/2011/439608
Ehlers, C. et al. Development of genetic methods and construction of a chromosomal glnK1 mutant in Methanosarcina mazei strain Gö1. Mol. Genet Genomics 273, 290–298 (2005).
pubmed: 15824904
doi: 10.1007/s00438-005-1128-7
Thomsen, J., Weidenbach, K., Metcalf, W. W. & Schmitz, R. A. Genetic methods and construction of chromosomal mutations in methanogenic archaea. Methods Mol. Biol. 2522, 105–117 (2022).
pubmed: 36125745
doi: 10.1007/978-1-0716-2445-6_6
Prasse, D. et al. First description of small proteins encoded by spRNAs in Methanosarcina mazei strain Gö1. Biochimie 117, 138–148 (2015).
pubmed: 25890157
doi: 10.1016/j.biochi.2015.04.007
Gutt, M. et al. High complexity of Glutamine synthetase regulation in Methanosarcina mazei: Small protein 26 interacts and enhances glutamine synthetase activity. FEBS J. 288, 5350–5373 (2021).
pubmed: 33660383
doi: 10.1111/febs.15799
Habenicht, T. et al. Small protein mediates inhibition of ammonium transport in Methanosarcina mazei-an ancient mechanism? Microbiol Spectr. 11, e0281123 (2023).
pubmed: 37909787
doi: 10.1128/spectrum.02811-23
Aspden, J. L. et al. Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq. eLife 3, e03528 (2014).
pubmed: 25144939
pmcid: 4359375
doi: 10.7554/eLife.03528
Baek, J., Lee, J., Yoon, K. & Lee, H. Identification of unannotated small genes in Salmonella. G3 Genes|Genomes|Genet. 7, 983–989 (2017).
pubmed: 28122954
pmcid: 5345727
doi: 10.1534/g3.116.036939
Bazzini, A. A. et al. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J. 33, 981–993 (2014).
pubmed: 24705786
pmcid: 4193932
doi: 10.1002/embj.201488411
Neuhaus, K. et al. Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq – ryhB encodes the regulatory RNA RyhB and a peptide, RyhP. BMC Genomics 18, 216 (2017).
pubmed: 28245801
pmcid: 5331693
doi: 10.1186/s12864-017-3586-9
Hemm, M. R., Paul, B. J., Schneider, T. D., Storz, G. & Rudd, K. E. Small membrane proteins found by comparative genomics and ribosome binding site models. Mol. Microbiol 70, 1487–1501 (2008).
pubmed: 19121005
pmcid: 2614699
doi: 10.1111/j.1365-2958.2008.06495.x
Gelsinger, D. R. et al. Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution. Nucleic Acids Res. 48, 5201–5216 (2020).
pubmed: 32382758
pmcid: 7261190
doi: 10.1093/nar/gkaa304
Hadjeras, L. et al. Revealing the small proteome of Haloferax volcanii by combining ribosome profiling and small-protein optimized mass spectrometry. microLife 4, uqad001 (2023).
pubmed: 37223747
pmcid: 10117724
doi: 10.1093/femsml/uqad001
Raina, M., King, A., Bianco, C. & Vanderpool, C. K. Dual-Function RNAs. Microbiol Spectr 6, https://doi.org/10.1128/microbiolspec.RWR-0032-2018 (2018).
Bobrovskyy, M. & Vanderpool, C. K. Diverse mechanisms of post-transcriptional repression by the small RNA regulator of glucose-phosphate stress. Mol. Microbiol 99, 254–273 (2016).
pubmed: 26411266
doi: 10.1111/mmi.13230
Lloyd, C. R., Park, S., Fei, J. & Vanderpool, C. K. The small protein SgrT controls transport activity of the glucose-specific phosphotransferase system. J Bacteriol 199, https://doi.org/10.1128/jb.00869-16 (2017).
Oh, E. et al. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147, 1295–1308 (2011).
pubmed: 22153074
pmcid: 3277850
doi: 10.1016/j.cell.2011.10.044
Hadjeras, L. et al. Unraveling the small proteome of the plant symbiont Sinorhizobium meliloti by ribosome profiling and proteogenomics. microLife 4, uqad012 (2023).
pubmed: 37223733
pmcid: 10117765
doi: 10.1093/femsml/uqad012
Ingolia, N. T. Ribosome Footprint Profiling of Translation throughout the Genome. Cell 165, 22–33 (2016).
pubmed: 27015305
pmcid: 4917602
doi: 10.1016/j.cell.2016.02.066
Vazquez-Laslop, N., Sharma, C. M., Mankin, A. & Buskirk, A. R. Identifying small open reading frames in prokaryotes with ribosome profiling. J. Bacteriol. 204, e0029421 (2022).
pubmed: 34339296
doi: 10.1128/JB.00294-21
Gelhausen, R. et al. HRIBO: high-throughput analysis of bacterial ribosome profiling data. Bioinformatics 37, 2061–2063 (2021).
pubmed: 33175953
doi: 10.1093/bioinformatics/btaa959
Clauwaert, J., Menschaert, G. & Waegeman, W. DeepRibo: a neural network for precise gene annotation of prokaryotes by combining ribosome profiling signal and binding site patterns. Nucleic Acids Res. 47, e36 (2019).
pubmed: 30753697
pmcid: 6451124
doi: 10.1093/nar/gkz061
Ndah, E. et al. REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes. Nucleic Acids Res. 45, e168 (2017).
pubmed: 28977509
pmcid: 5714196
doi: 10.1093/nar/gkx758
Jäger, D. et al. An archaeal sRNA targeting cis - and trans -encoded mRNAs via two distinct domains. Nucleic Acids Res. 40, 10964–10979 (2012).
pubmed: 22965121
pmcid: 3510493
doi: 10.1093/nar/gks847
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).
pubmed: 18190707
pmcid: 2395244
doi: 10.1186/gb-2008-9-1-r7
Omasits, U. et al. An integrative strategy to identify the entire protein coding potential of prokaryotic genomes by proteogenomics. Genome Res. 27, 2083–2095 (2017).
pubmed: 29141959
pmcid: 5741054
doi: 10.1101/gr.218255.116
Cassidy, L. et al. Multidimensional separation schemes enhance the identification and molecular characterization of low molecular weight proteomes and short open reading frame-encoded peptides in top-down proteomics. J. Proteom. 230, 103988 (2021).
doi: 10.1016/j.jprot.2020.103988
Cassidy, L., Kaulich, P. T. & Tholey, A. Depletion of high-molecular-mass proteins for the identification of small proteins and short open reading frame encoded peptides in cellular proteomes. J. Proteome Res. 18, 1725–1734 (2019).
pubmed: 30779583
doi: 10.1021/acs.jproteome.8b00948
Cassidy, L., Prasse, D., Linke, D., Schmitz, R. A. & Tholey, A. Combination of bottom-up 2D-LC-MS and semi-top-down GelFree-LC-MS enhances coverage of proteome and low molecular weight short open reading frame encoded peptides of the archaeon Methanosarcina mazei. J. Proteome Res. 15, 3773–3783 (2016).
pubmed: 27557128
doi: 10.1021/acs.jproteome.6b00569
Kaulich, P. T., Cassidy, L., Weidenbach, K., Schmitz, R. A. & Tholey, A. Complementarity of different SDS-PAGE gel staining methods for the identification of short open reading frame-encoded peptides. PROTEOMICS 20, 2000084 (2020).
doi: 10.1002/pmic.202000084
Madeira, F. et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50, W276–W279 (2022).
pubmed: 35412617
pmcid: 9252731
doi: 10.1093/nar/gkac240
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).
pubmed: 34791371
doi: 10.1093/nar/gkab1061
Schumacher, K. et al. Ribosome profiling reveals the fine-tuned response of Escherichia coli to mild and severe acid stress. bioRxiv, 2023.2006.2002.543275 https://doi.org/10.1101/2023.06.02.543275 (2023).
Ingolia, N. T. et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep. 8, 1365–1379 (2014).
pubmed: 25159147
pmcid: 4216110
doi: 10.1016/j.celrep.2014.07.045
Ingolia, N. T., Hussmann, J. A. & Weissman, J. S. Ribosome profiling: Global views of translation. Cold Spring Harb Perspect Biol 11 https://doi.org/10.1101/cshperspect.a032698 (2019).
Brar, G. A. & Weissman, J. S. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat. Rev. Mol. Cell Biol. 16, 651–664 (2015).
pubmed: 26465719
pmcid: 5522010
doi: 10.1038/nrm4069
Gelhausen, R. et al. RiboReport - benchmarking tools for ribosome profiling-based identification of open reading frames in bacteria. Brief Bioinformatics 23, https://doi.org/10.1093/bib/bbab549 (2022).
Fritsch, C. et al. Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting. Genome Res 22, 2208–2218 (2012).
pubmed: 22879431
pmcid: 3483550
doi: 10.1101/gr.139568.112
Fijalkowska, D. et al. eIF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs. Nucleic Acids Res 45, 7997–8013 (2017).
pubmed: 28541577
pmcid: 5570006
doi: 10.1093/nar/gkx469
Mohammad, F., Green, R. & Buskirk, A. R. A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution. eLife 8, https://doi.org/10.7554/eLife.42591 (2019).
Venturini, E. et al. A global data-driven census of Salmonella small proteins and their potential functions in bacterial virulence. microLife 1, uqaa002 (2020).
pubmed: 37223003
pmcid: 10117436
doi: 10.1093/femsml/uqaa002
Mackowiak, S. D. et al. Extensive identification and analysis of conserved small ORFs in animals. Genome Biol. 16, 179 (2015).
pubmed: 26364619
pmcid: 4568590
doi: 10.1186/s13059-015-0742-x
Fuchs, S. et al. Towards the characterization of the hidden world of small proteins in Staphylococcus aureus, a proteogenomics approach. PLoS Genet 17, e1009585 (2021).
pubmed: 34061833
pmcid: 8195425
doi: 10.1371/journal.pgen.1009585
VanOrsdel, C. E. et al. Identifying New Small Proteins in Escherichia coli. Proteomics 18, e1700064 (2018).
pubmed: 29645342
doi: 10.1002/pmic.201700064
Weaver, J., Mohammad, F., Buskirk, A. R. & Storz, G. Identifying small proteins by ribosome profiling with stalled initiation complexes. MBio 10, https://doi.org/10.1128/mBio.02819-18 (2019).
Miravet-Verde, S. et al. Unraveling the hidden universe of small proteins in bacterial genomes. Mol. Syst. Biol. 15, e8290 (2019).
pubmed: 30796087
pmcid: 6385055
doi: 10.15252/msb.20188290
Veit, K. et al. Global transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities. Mol. Genet Genomics 276, 41–55 (2006).
pubmed: 16625354
doi: 10.1007/s00438-006-0117-9
Gray, T., Storz, G. & Papenfort, K. Small Proteins; Big Questions. J. Bacteriol. 204, e00341–00321 (2022).
pubmed: 34309401
pmcid: 8765408
doi: 10.1128/JB.00341-21
Vanderpool, C. K. Physiological consequences of small RNA-mediated regulation of glucose-phosphate stress. Curr. Opin. Microbiol 10, 146–151 (2007).
pubmed: 17383224
doi: 10.1016/j.mib.2007.03.011
Venkat, K. et al. A dual-function RNA balances carbon uptake and central metabolism in Vibrio cholerae. Embo j. 40, e108542 (2021).
pubmed: 34612526
pmcid: 8672173
doi: 10.15252/embj.2021108542
Hanahan, D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557–580 (1983).
pubmed: 6345791
doi: 10.1016/S0022-2836(83)80284-8
Miller, V. L. & Mekalanos, J. J. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170, 2575–2583 (1988).
pubmed: 2836362
pmcid: 211174
doi: 10.1128/jb.170.6.2575-2583.1988
Inoue, H., Nojima, H. & Okayama, H. High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28 (1990).
pubmed: 2265755
doi: 10.1016/0378-1119(90)90336-P
Gehlert, F. O. et al. Active in vivo translocation of the Methanosarcina mazei Gö1 Casposon. Nucleic Acids Research, gkad474 https://doi.org/10.1093/nar/gkad474 (2023).
Gerashchenko, M. V. & Gladyshev, V. N. Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res. 42, e134 (2014).
pubmed: 25056308
pmcid: 4176156
doi: 10.1093/nar/gku671
Sharma, C. M., Darfeuille, F., Plantinga, T. H. & Vogel, J. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev. 21, 2804–2817 (2007).
pubmed: 17974919
pmcid: 2045133
doi: 10.1101/gad.447207
Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550 (2012).
pubmed: 22836135
pmcid: 3535016
doi: 10.1038/nprot.2012.086
Köster, J. & Rahmann, S. Snakemake–a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).
pubmed: 22908215
doi: 10.1093/bioinformatics/bts480
Grüning, B. et al. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat. Methods 15, 475–476 (2018).
pubmed: 29967506
pmcid: 11070151
doi: 10.1038/s41592-018-0046-7
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 17, 10 (2011).
doi: 10.14806/ej.17.1.200
Otto, C., Stadler, P. F. & Hoffmann, S. Lacking alignments? The next-generation sequencing mapper segemehl revisited. Bioinformatics 30, 1837–1843 (2014).
pubmed: 24626854
doi: 10.1093/bioinformatics/btu146
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res 7, 1338 (2018).
pubmed: 30254741
pmcid: 6124377
doi: 10.12688/f1000research.15931.1
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
pubmed: 27312411
pmcid: 5039924
doi: 10.1093/bioinformatics/btw354
Buels, R. et al. JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 17, 66 (2016).
pubmed: 27072794
pmcid: 4830012
doi: 10.1186/s13059-016-0924-1
Kaulich, P. T., Cassidy, L., Winkels, K. & Tholey, A. Improved identification of proteoforms in top-down proteomics using FAIMS with internal CV stepping. Anal. Chem. 94, 3600–3607 (2022).
pubmed: 35172570
doi: 10.1021/acs.analchem.1c05123
Slavoff, S. A. et al. Peptidomic discovery of short open reading frame–encoded peptides in human cells. Nat. Chem. Biol. 9, 59–64 (2013).
pubmed: 23160002
doi: 10.1038/nchembio.1120
Vizcaíno, J. A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).
pubmed: 24727771
pmcid: 3986813
doi: 10.1038/nbt.2839
Xiao, Z., Zou, Q., Liu, Y. & Yang, X. Genome-wide assessment of differential translations with ribosome profiling data. Nat. Commun. 7, 11194 (2016).
pubmed: 27041671
pmcid: 4822032
doi: 10.1038/ncomms11194
Li, W., Wang, W., Uren, P. J., Penalva, L. O. F. & Smith, A. D. Riborex: fast and flexible identification of differential translation from Ribo-seq data. Bioinformatics 33, 1735–1737 (2017).
pubmed: 28158331
pmcid: 5860393
doi: 10.1093/bioinformatics/btx047
Chothani, S. et al. deltaTE: Detection of translationally regulated genes by integrative analysis of Ribo-seq and RNA-seq data. Curr. Protoc. Mol. Biol. 129, e108 (2019).
pubmed: 31763789
pmcid: 9285699
doi: 10.1002/cpmb.108
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov. (Camb.) 2, 100141 (2021).
Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).
pubmed: 10802651
pmcid: 3037419
doi: 10.1038/75556
Consortium, T. G. O. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021).
doi: 10.1093/nar/gkaa1113
UniProt, C. Uniprot: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).
doi: 10.1093/nar/gkac1052
Carlson, M. & Pagès, H. AnnotationForge: Tools for building SQLite-based annotation data packages. R Packag. version 1 (2020).
Wickham, H. ggplot2. Wiley Interdiscip. Rev.: computational Stat. 3, 180–185 (2011).
doi: 10.1002/wics.147
Thomsen, J. & Schmitz, R. A. Generating a small shuttle vector for effective genetic engineering of Methanosarcina mazei allowed first insights in plasmid replication mechanism in the Methanoarchaeon. Int J Mol Sci. 23 https://doi.org/10.3390/ijms231911910 (2022).
Guss, A. M., Rother, M., Zhang, J. K., Kulkarni, G. & Metcalf, W. W. New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species. Archaea 2, 193–203 (2008).
pubmed: 19054746
pmcid: 2685592
doi: 10.1155/2008/534081
Allen, R. J. et al. Conservation analysis of the CydX protein yields insights into small protein identification and evolution. BMC Genomics 15, 946 (2014).
pubmed: 25475368
pmcid: 4325964
doi: 10.1186/1471-2164-15-946
Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).
pubmed: 20472543
pmcid: 2887053
doi: 10.1093/bioinformatics/btq249