LncRNA-dependent nuclear stress bodies promote intron retention through SR protein phosphorylation.
Animals
CHO Cells
Cell Nucleus
/ metabolism
Cricetulus
Gene Expression Profiling
Gene Expression Regulation
HeLa Cells
Heat-Shock Response
Humans
Introns
Microsatellite Repeats
Phosphorylation
Protein Serine-Threonine Kinases
/ metabolism
Protein-Tyrosine Kinases
/ metabolism
RNA Splicing Factors
/ metabolism
RNA, Long Noncoding
/ metabolism
Serine-Arginine Splicing Factors
/ metabolism
Exome Sequencing
intron retention
noncoding RNA
nuclear stress bodies
phosphorylation
splicing factors
Journal
The EMBO journal
ISSN: 1460-2075
Titre abrégé: EMBO J
Pays: England
ID NLM: 8208664
Informations de publication
Date de publication:
03 02 2020
03 02 2020
Historique:
received:
20
06
2019
revised:
17
10
2019
accepted:
29
10
2019
pubmed:
30
11
2019
medline:
8
8
2020
entrez:
30
11
2019
Statut:
ppublish
Résumé
A number of long noncoding RNAs (lncRNAs) are induced in response to specific stresses to construct membrane-less nuclear bodies; however, their function remains poorly understood. Here, we report the role of nuclear stress bodies (nSBs) formed on highly repetitive satellite III (HSATIII) lncRNAs derived from primate-specific satellite III repeats upon thermal stress exposure. A transcriptomic analysis revealed that depletion of HSATIII lncRNAs, resulting in elimination of nSBs, promoted splicing of 533 retained introns during thermal stress recovery. A HSATIII-Comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) analysis identified multiple splicing factors in nSBs, including serine and arginine-rich pre-mRNA splicing factors (SRSFs), the phosphorylation states of which affect splicing patterns. SRSFs are rapidly de-phosphorylated upon thermal stress exposure. During stress recovery, CDC like kinase 1 (CLK1) was recruited to nSBs and accelerated the re-phosphorylation of SRSF9, thereby promoting target intron retention. Our findings suggest that HSATIII-dependent nSBs serve as a conditional platform for phosphorylation of SRSFs by CLK1 to promote the rapid adaptation of gene expression through intron retention following thermal stress exposure.
Identifiants
pubmed: 31782550
doi: 10.15252/embj.2019102729
pmc: PMC6996502
doi:
Substances chimiques
RNA Splicing Factors
0
RNA, Long Noncoding
0
SRSF9 protein, human
0
Serine-Arginine Splicing Factors
170974-22-8
Clk dual-specificity kinases
EC 2.7.1.-
Protein-Tyrosine Kinases
EC 2.7.10.1
Protein Serine-Threonine Kinases
EC 2.7.11.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e102729Subventions
Organisme : Ministry of Education, Culture, Sports, Science and Technology (MEXT)
ID : JP26113002
Pays : International
Organisme : Ministry of Education, Culture, Sports, Science and Technology (MEXT)
ID : JP16H06279
Pays : International
Organisme : Ministry of Education, Culture, Sports, Science and Technology (MEXT)
ID : JP17H03630
Pays : International
Organisme : Ministry of Education, Culture, Sports, Science and Technology (MEXT)
ID : JP17K19335
Pays : International
Organisme : Ministry of Education, Culture, Sports, Science and Technology (MEXT)
ID : JP19K06478
Pays : International
Organisme : Tokyo Biochemical Research Foundation (TBRF)
Pays : International
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2019 The Authors.
Références
Genes Cells. 2016 Sep;21(9):1006-14
pubmed: 27491955
Biochem J. 2015 Dec 15;472(3):329-38
pubmed: 26443864
Nature. 1994 Jun 23;369(6482):678-82
pubmed: 8208298
Mol Cell. 2007 Oct 12;28(1):79-90
pubmed: 17936706
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Proteomics. 2008 Aug;8(15):2994-3003
pubmed: 18615432
EMBO J. 2012 Oct 17;31(20):4020-34
pubmed: 22960638
Nature. 2004 Feb 5;427(6974):553-8
pubmed: 14765198
Structure. 2009 Mar 11;17(3):352-62
pubmed: 19278650
Biochem Biophys Res Commun. 2003 Aug 15;308(1):170-6
pubmed: 12890497
J Mol Biol. 2013 Aug 23;425(16):2894-909
pubmed: 23707382
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4304-9
pubmed: 25831520
Mol Cell. 2009 Mar 27;33(6):717-26
pubmed: 19217333
EMBO J. 2020 Jan 2;39(1):e101112
pubmed: 31721251
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
Dev Cell. 2017 Apr 10;41(1):82-93.e4
pubmed: 28366282
Genes Dev. 1997 Feb 1;11(3):334-44
pubmed: 9030686
Nat Methods. 2016 Jun;13(6):508-14
pubmed: 27018577
Biochem J. 2009 Jan 1;417(1):15-27
pubmed: 19061484
Nucleic Acids Res. 1998 Aug 1;26(15):3542-9
pubmed: 9671816
J Cell Biol. 2011 Oct 3;195(1):27-40
pubmed: 21949414
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9666-70
pubmed: 15210956
J Biol Chem. 1995 Dec 15;270(50):29718-23
pubmed: 8530361
Nature. 2019 Jan;565(7741):606-611
pubmed: 30651636
Mol Cell. 2017 Aug 17;67(4):608-621.e6
pubmed: 28757210
Mol Biol Cell. 2002 Jun;13(6):2069-79
pubmed: 12058070
Genes Dev. 2015 Jan 1;29(1):63-80
pubmed: 25561496
Genome Biol. 2009;10(10):242
pubmed: 19857271
Biochim Biophys Acta. 2016 Jan;1859(1):139-46
pubmed: 26021608
Nat Rev Mol Cell Biol. 2017 May;18(5):285-298
pubmed: 28225081
Genome Biol. 2014;15(12):550
pubmed: 25516281
Cold Spring Harb Perspect Biol. 2010 Jun;2(6):a000695
pubmed: 20516127
J Cell Sci. 2004 Sep 1;117(Pt 19):4551-8
pubmed: 15331664
J Cell Sci. 1997 Dec;110 ( Pt 23):2935-41
pubmed: 9359877
J Cell Biol. 2004 Jan 5;164(1):25-33
pubmed: 14699086
Mol Cell. 2017 Aug 3;67(3):433-446.e4
pubmed: 28689656
J Cell Biol. 2002 Mar 4;156(5):775-81
pubmed: 11877455
Biochem Biophys Res Commun. 2019 Aug 20;516(2):419-423
pubmed: 31227213
Cell. 2017 May 18;169(5):836-848.e15
pubmed: 28525754
RNA. 1997 Dec;3(12):1456-67
pubmed: 9404896
Mol Cell Biol. 2001 Nov;21(21):7307-19
pubmed: 11585913
Nature. 2019 Jan;565(7741):612-617
pubmed: 30651641
Mol Biol Cell. 2001 Nov;12(11):3502-14
pubmed: 11694584
Cancer Cell. 2017 Oct 9;32(4):411-426.e11
pubmed: 28966034
Neuron. 2016 Dec 21;92(6):1266-1278
pubmed: 28009274
Nucleic Acids Res. 2017 Jan 9;45(1):382-394
pubmed: 27536004
EMBO J. 1996 Jan 15;15(2):265-75
pubmed: 8617202
Chem Biol. 2011 Jan 28;18(1):67-76
pubmed: 21276940
Mol Cell Biol. 2002 Jun;22(12):4001-10
pubmed: 12024014
J Cell Sci. 1999 May;112 ( Pt 10):1465-76
pubmed: 10212141
Mol Biol Cell. 2005 Jun;16(6):2597-604
pubmed: 15788562
Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6769-74
pubmed: 10359787
Mol Cell. 2007 Oct 26;28(2):180-1
pubmed: 17964256
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Bioinformatics. 2014 May 1;30(9):1290-1
pubmed: 24395753
Mol Cell Biol. 1997 Oct;17(10):5996-6001
pubmed: 9315658
Chromosome Res. 2000;8(4):319-34
pubmed: 10919723
J Vis Exp. 2012 Mar 25;(61):null
pubmed: 22472705
Nucleic Acids Res. 2019 Jan 8;47(D1):D766-D773
pubmed: 30357393
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D590-8
pubmed: 16381938
Elife. 2016 Mar 25;5:
pubmed: 27015110
J Cell Biol. 1989 Nov;109(5):1921-35
pubmed: 2681223
RNA. 2000 Sep;6(9):1197-211
pubmed: 10999598
Am J Hum Genet. 2007 Mar;80(3):495-501
pubmed: 17273970
Biochem J. 2014 Aug 15;462(1):143-52
pubmed: 24869919
Cell. 2012 Jun 8;149(6):1393-406
pubmed: 22658674
J Biol Chem. 1995 Sep 15;270(37):21524-31
pubmed: 7665564