Microsatellite DNA markers applicable to paternity inference in the androdioecious gooseneck barnacle Octolasmis warwickii (Lepadiformes: Poecilasmatidae).
Androdioecy
Dwarf male
Hermaphrodite
Parentage
Short tandem repeat
Simple sequence repeat
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
Jun 2020
Jun 2020
Historique:
received:
07
02
2020
accepted:
25
04
2020
pubmed:
8
5
2020
medline:
17
2
2021
entrez:
8
5
2020
Statut:
ppublish
Résumé
The gooseneck barnacle Octolasmis warwickii has a rare sexual system called androdioecy, in which hermaphrodites and dwarf males co-occur. It has been hypothesized that dwarf males can coexist with conspecific hermaphrodites when dwarf males are capable of leaving more offspring than hermaphrodites via male reproduction. This hypothesis of reproductive superiority of dwarf males can be validated by comparing the reproductive success between dwarf males and hermaphrodites through DNA marker-based parentage testing. In the present study, we developed microsatellite DNA markers for O. warwickii, and evaluated the power of these markers to infer parentage based on simulation analysis. Using next generation sequencing, we obtained 344 microsatellite sequences suitable for designing primer sets for amplification in polymerase chain reaction (PCR). Of these, we examined the PCR amplification efficiency of 54 primer sets, of which 11 passed our primer screening in a population sample (n = 35). The developed markers exhibited moderate to high levels of polymorphisms, and met Hardy-Weinberg equilibrium with little evidence of significant allelic association to each other. Our simulated paternity inference suggested that the combinational use of the markers allows a high resolution of parentage (success rate of > 99.9%) if all candidate fathers are available.
Identifiants
pubmed: 32378167
doi: 10.1007/s11033-020-05473-9
pii: 10.1007/s11033-020-05473-9
doi:
Substances chimiques
Genetic Markers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4885-4890Subventions
Organisme : the Japan Society for the Promotion of Science
ID : SPS KAKENHI; nos 15H04416
Organisme : the Japan Society for the Promotion of Science
ID : JSPS KAKENHI; no. 19H03284
Références
Charlesworth D (2006) Evolution of plant breeding systems. Curr Biol 16:R726–R735. https://doi.org/10.1016/j.cub.2006.07.068
doi: 10.1016/j.cub.2006.07.068
pubmed: 16950099
Weeks SC, Brantner JS, Astrop TI, Ott DW, Rabet N (2014) The evolution of hermaphroditism from dioecy in crustaceans: selfing hermaphroditism described in a fourth Spinicaudatan genus. Evol Biol 41:251–261. https://doi.org/10.1007/s11692-013-9265-0
doi: 10.1007/s11692-013-9265-0
Darwin C (1851) A monograph on the subclass Cirripedia, with figures of all the species. The Ray Society, London
Yamaguchi S, Yusa Y, Yamato Y, Urano S, Takahashi S (2008) Mating group size and evolutionary stable pattern of sexuality in barnacles. J Theor Biol 253:61–73. https://doi.org/10.1016/j.jtbi.2008.01.025
doi: 10.1016/j.jtbi.2008.01.025
pubmed: 18342337
Yamaguchi S, Charnov EL, Sawada K, Yusa Y (2012) Sexual systems and life history of barnacles: a theoretical perspective. Integr Comp Biol 52:356–365. https://doi.org/10.1093/icb/ics046
doi: 10.1093/icb/ics046
pubmed: 22523128
Kelly MW, Sanford E (2010) The evolution of mating systems in barnacles. J Exp Mar Biol Ecol 392:37–45. https://doi.org/10.1016/j.jembe.2010.04.009
doi: 10.1016/j.jembe.2010.04.009
Yusa Y, Yoshikawa M, Kitaura J, Kawane M, Ozaki Y, Yamato S, Høeg JT (2012) Adaptive evolution of sexual systems in pedunculate barnacles. Proc R Soc B 279:959–966. https://doi.org/10.1098/rspb.2011.1554
doi: 10.1098/rspb.2011.1554
pubmed: 21881138
Dreyer N, Olesen J, Dahl RB, Kan Chan BK, Høeg JT (2018) Sex-specific metamorphosis of cypris larvae in the androdioecious barnacle Scalpellum scalpellum (Crustacea: Cirripedia: Thoracica) and its implications for the adaptive evolution of dwarf males. PLoS ONE 13:e0191963. https://doi.org/10.1371/journal.pone.0191963
doi: 10.1371/journal.pone.0191963
pubmed: 29466363
pmcid: 5842884
Dreyer N, Sørensen S, Yusa Y, Sawada K, Nash DR, Svennevig N, Høeg JT (2018) Sex allocation and maintenance of androdioecy in the pedunculated barnacle Scalpellum scalpellum (Crustacea: Cirripedia: Thoracica). Biol J Linn Soc Lond 124:776–788. https://doi.org/10.1093/biolinnean/bly081
doi: 10.1093/biolinnean/bly081
Weeks SC, Benvenuto C, Reed SK (2006) When males and hermaphrodites coexist: a review of androdioecy in animals. Integr Comp Biol 46:449–464. https://doi.org/10.1093/icb/icj048
doi: 10.1093/icb/icj048
pubmed: 21672757
Weeks SC (2012) The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the animalia. Evolution 66:3670–3686. https://doi.org/10.1111/j.1558-5646.2012.01714.x
doi: 10.1111/j.1558-5646.2012.01714.x
pubmed: 23206127
Urano S, Yamaguchi S, Yamato S, Takahashi S, Yusa Y (2009) Evolution of dwarf males and a variety of sexual modes in barnacles: an ESS approach. Evol Ecol Res 11:713–729
Ewers-Saucedo C, Hope NB, Wares JP (2016) The unexpected mating system of the androdioecious barnacle Chelonibia testudinaria (Linnaeus 1758). Mol Ecol 25:2081–2092. https://doi.org/10.1111/mec.13593
doi: 10.1111/mec.13593
pubmed: 26923636
Høeg JT, Yusa Y, Dreyer N (2016) Sex determination in the androdioecious barnacle Scalpellum scalpellum (Crustacea: Cirripedia). Biol J Linn Soc Lond 118:359–368. https://doi.org/10.1111/bij.12735
doi: 10.1111/bij.12735
Yusa Y, Takemura M, Miyazaki K, Watanabe T, Yamato S (2010) Dwarf males of Octolasmis warwickii (Cirripedia: Thoracica): the first example of coexistence of males and hermaphrodites in the suborder Lepadomorpha. Biol Bull 218:259–265. https://doi.org/10.1086/BBLv218n3p259
doi: 10.1086/BBLv218n3p259
pubmed: 20570849
Wijayanti H, Yusa Y (2016) Plastic sexual expression in the androdioecious barnacle Octolasmis warwickii (Cirripedia: Pedunculata). Biol Bull 230:51–55. https://doi.org/10.1086/BBLv230n1p51
doi: 10.1086/BBLv230n1p51
pubmed: 26896177
Svane I (1986) Sex determination in Scalpellum scalpellum (Cirripedia: Thoracica: Lepadomorpha), a hermaphroditic goose barnacle with dwarf males. Mar Biol 90:249–253
doi: 10.1007/BF00569135
Crisp DJ (1983) Chelonobia patula (Ranzani), a pointer to the evolution of the complemental male. Mar Biol Lett 4:281–294
Barazandeh M, Davis CS, Neufeld CJ, Coltman DW, Palmer AR (2013) Something Darwin didn't know about barnacles: spermcast mating in a common stalked species. Proc R Soc B 280:20122919. https://doi.org/10.1098/rspb.2012.2919
doi: 10.1098/rspb.2012.2919
pubmed: 23325777
pmcid: 3574338
Plough LV, Moran A, Marko P (2014) Density drives polyandry and relatedness influences paternal success in the Pacific gooseneck barnacle, Pollicipes elegans. BMC Evol Biol 14:81. https://doi.org/10.1186/1471-2148-14-81
doi: 10.1186/1471-2148-14-81
pubmed: 24739102
pmcid: 4021092
Sambrook J, Fritsch EF, Manitalis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Plainview
Nakamura Y, Shigenobu Y, Sugaya T, Kurokawa T, Saitoh K (2013) Automated screening and primer design of fish microsatellite DNA loci on pyrosequencing data. Ichthyol Res 60:184–187. https://doi.org/10.1007/s10228-012-0317-8
doi: 10.1007/s10228-012-0317-8
Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580. https://doi.org/10.1093/nar/27.2.573
doi: 10.1093/nar/27.2.573
pubmed: 9862982
pmcid: 148217
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115. https://doi.org/10.1093/nar/gks596
doi: 10.1093/nar/gks596
pubmed: 22730293
pmcid: 3424584
Boutin-Ganache I, Raposo M, Raymond M, Deschepper CF (2001) M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. Biotechniques 31:24–26, 28. https://doi.org/10.2144/01311bm02
doi: 10.2144/01311bm02
Ballard LW, Adams PS, Bao Y, Bartley D, Bintzler D, Kasch L, Petukhova L, Rosato C (2002) Strategies for genotyping: effectiveness of tailing primers to increase accuracy in short tandem repeat determinations. J Biomol Tech 13:20–29
pubmed: 19498960
pmcid: 2279839
Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
doi: 10.1111/j.1755-0998.2010.02847.x
Sekino M, Kakehi S (2012) PARFEX v1.0: an EXCEL
doi: 10.1007/s12686-011-9523-3
Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331
pubmed: 6247908
pmcid: 1686077
Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
doi: 10.1111/j.1365-294X.2007.03089.x
pubmed: 17305863
Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859. https://doi.org/10.1038/nrg1707
doi: 10.1038/nrg1707
pubmed: 16304600
Pike N (2011) Using false discovery rates for multiple comparisons in ecology and evolution. Methods Ecol Evol 2:278–282. https://doi.org/10.1111/j.2041-210X.2010.00061.x
doi: 10.1111/j.2041-210X.2010.00061.x
Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655. https://doi.org/10.1046/j.1365-294x.1998.00374.x
doi: 10.1046/j.1365-294x.1998.00374.x
pubmed: 9633105
Plough LV, Marko PB (2014) Characterization of microsatellite loci and repeat density in the gooseneck barnacle, Pollicipes elegans, using next generation sequencing. J Hered 105:136–142. https://doi.org/10.1093/jhered/est064
doi: 10.1093/jhered/est064
pubmed: 24115106
Ewers-Saucedo C, Zardus JD, Wares JP (2016) Microsatellite loci discovery from next generation sequencing data and loci characterization in the epizoic barnacle Chelonibia testudinaria (Linnaeus, 1758). PeerJ 4:e2019. https://doi.org/10.7717/peerj.2019
doi: 10.7717/peerj.2019
pubmed: 27231653
pmcid: 4878368